
Tools for Robot Software
Development

Dr. Alex Mitrevski
Master of Autonomous Systems

Structure

▶ Preliminaries

▶ Distributed software development

▶ Behaviour management: State machines and behaviour trees

▶ A bag of (other) tools

Tools for Robot Software Development 2 / 35

Preliminaries

Tools for Robot Software Development 3 / 35

Robot Software Development as a Complex, Diverse Process

▶ Robotics software development is quite diverse and involves a large variety of tools and
frameworks

▶ Diversity exists in terms of the type of software and the purpose for which it is developed

▶ In this lecture, we will briefly introduce various relevant tools that are commonly used in practice

▶ Frameworks and tools evolve or get replaced by new ones over time — robot software
development is a dynamic process, so it is important to keep up with new developments

▶ We will focus on frameworks that have either been in use for a prolonged period and have thus stood
the test of time, or are becoming more important due to recent research advances

Tools for Robot Software Development 4 / 35

Overview of Robot Development Frameworks

...

Distributed
system development

Robot behaviour
management

Computer
vision

...

Robot software development
tools and frameworks

...

...

Machine
learning

Data
visualisation

Robot
simulators

Tools for Robot Software Development 5 / 35

Overview of Robot Development Frameworks

...

ROS ZMQ / Zyre Docker

...

State machines

...

Behaviour trees

...

OpenCV PCL Open3D

...

Distributed
system development

Robot behaviour
management

Computer
vision

...

Robot software development
tools and frameworks

...

...

Machine
learning

Data
visualisation

Robot
simulators

...

PyTorch Tensorflow

...

Rviz PlotJuggler Foxglove

...

Gazebo Webots CoppeliaSim

Tools for Robot Software Development 5 / 35

Overview of Robot Development Frameworks

...

ROS ZMQ / Zyre Docker

...

State machines

...

Behaviour trees

...

OpenCV PCL Open3D

...

Distributed
system development

Robot behaviour
management

Computer
vision

...

Robot software development
tools and frameworks

...

...

Machine
learning

Data
visualisation

Robot
simulators

...

PyTorch Tensorflow

...

Rviz PlotJuggler Foxglove

...

Gazebo Webots CoppeliaSimDis
cus

sed
in
AM

R

Dis
cus

sed
in
a l
ate

r le
ctu

re

Tools for Robot Software Development 5 / 35

Distributed Software Development

Tools for Robot Software Development 6 / 35

Distributed Development

▶ As discussed in the previous lecture, a robot is a distributed system, with components running
over multiple machines on the same network or potentially even online

▶ A variety of distributed development tools have been used in robotics over the years

▶ Some prominent examples are the Common Object Request Broker Architecture (CORBA) and
Internet Communications Engine (Ice)

▶ The Robot Operating System (ROS) has evolved into a de facto standard for robot
software development

▶ ROS is standard at least in the academic setting — essentially all research robot platforms provide a
ROS interface and most popular sensors have a ROS driver

▶ There are, however, other frameworks that can be used to achieve similar goals and are sometimes
more suitable

Tools for Robot Software Development 7 / 35

Distributed Development

▶ As discussed in the previous lecture, a robot is a distributed system, with components running
over multiple machines on the same network or potentially even online

▶ A variety of distributed development tools have been used in robotics over the years

▶ Some prominent examples are the Common Object Request Broker Architecture (CORBA) and
Internet Communications Engine (Ice)

▶ The Robot Operating System (ROS) has evolved into a de facto standard for robot
software development

▶ ROS is standard at least in the academic setting — essentially all research robot platforms provide a
ROS interface and most popular sensors have a ROS driver

▶ There are, however, other frameworks that can be used to achieve similar goals and are sometimes
more suitable

Tools for Robot Software Development 7 / 35

Distributed Development

▶ As discussed in the previous lecture, a robot is a distributed system, with components running
over multiple machines on the same network or potentially even online

▶ A variety of distributed development tools have been used in robotics over the years

▶ Some prominent examples are the Common Object Request Broker Architecture (CORBA) and
Internet Communications Engine (Ice)

▶ The Robot Operating System (ROS) has evolved into a de facto standard for robot
software development

▶ ROS is standard at least in the academic setting — essentially all research robot platforms provide a
ROS interface and most popular sensors have a ROS driver

▶ There are, however, other frameworks that can be used to achieve similar goals and are sometimes
more suitable

Tools for Robot Software Development 7 / 35

Publish-Subscribe vs. Service-Client
As discussed in the previous lecture, distributed systems can use publish-subscribe or service-client communication

—
when do you use which pattern?

Publish-subscribe is an asynchronous pattern, where the arrival and processing
of data does not need to immediately trigger a subsequent execution

▶ Enables many components to receive the same message

▶ The publisher is not blocked after publishing a message

▶ Very useful for data arriving at high frequencies (e.g. sensor data)
http://docs.ros.org/en/humble/Tutorials/

Beginner-CLI-Tools/Understanding-ROS2-Topics/
Understanding-ROS2-Topics.html

Service-client is a synchronous pattern, where a request from a client triggers
an immediate execution from the server, which then sends a response back to
the client

▶ Enables peer-to-peer communication between components

▶ The client is blocked after calling the server and waits until the server
responds back or times out — but ROS2 allows asynchronous requests

▶ Useful when the execution of the caller depends on something provided by
the server (e.g. retrieving data from a robot’s knowledge base) http://docs.ros.org/en/humble/Tutorials/

Beginner-CLI-Tools/Understanding-ROS2-Services/
Understanding-ROS2-Services.html

Tools for Robot Software Development 8 / 35

http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html

Publish-Subscribe vs. Service-Client
As discussed in the previous lecture, distributed systems can use publish-subscribe or service-client communication —
when do you use which pattern?

Publish-subscribe is an asynchronous pattern, where the arrival and processing
of data does not need to immediately trigger a subsequent execution

▶ Enables many components to receive the same message

▶ The publisher is not blocked after publishing a message

▶ Very useful for data arriving at high frequencies (e.g. sensor data)
http://docs.ros.org/en/humble/Tutorials/

Beginner-CLI-Tools/Understanding-ROS2-Topics/
Understanding-ROS2-Topics.html

Service-client is a synchronous pattern, where a request from a client triggers
an immediate execution from the server, which then sends a response back to
the client

▶ Enables peer-to-peer communication between components

▶ The client is blocked after calling the server and waits until the server
responds back or times out — but ROS2 allows asynchronous requests

▶ Useful when the execution of the caller depends on something provided by
the server (e.g. retrieving data from a robot’s knowledge base) http://docs.ros.org/en/humble/Tutorials/

Beginner-CLI-Tools/Understanding-ROS2-Services/
Understanding-ROS2-Services.html

Tools for Robot Software Development 8 / 35

http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html

Publish-Subscribe vs. Service-Client
As discussed in the previous lecture, distributed systems can use publish-subscribe or service-client communication —
when do you use which pattern?

Publish-subscribe is an asynchronous pattern, where the arrival and processing
of data does not need to immediately trigger a subsequent execution

▶ Enables many components to receive the same message

▶ The publisher is not blocked after publishing a message

▶ Very useful for data arriving at high frequencies (e.g. sensor data)
http://docs.ros.org/en/humble/Tutorials/

Beginner-CLI-Tools/Understanding-ROS2-Topics/
Understanding-ROS2-Topics.html

Service-client is a synchronous pattern, where a request from a client triggers
an immediate execution from the server, which then sends a response back to
the client

▶ Enables peer-to-peer communication between components

▶ The client is blocked after calling the server and waits until the server
responds back or times out — but ROS2 allows asynchronous requests

▶ Useful when the execution of the caller depends on something provided by
the server (e.g. retrieving data from a robot’s knowledge base) http://docs.ros.org/en/humble/Tutorials/

Beginner-CLI-Tools/Understanding-ROS2-Services/
Understanding-ROS2-Services.html

Tools for Robot Software Development 8 / 35

http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html

Publish-Subscribe vs. Service-Client
As discussed in the previous lecture, distributed systems can use publish-subscribe or service-client communication —
when do you use which pattern?

Publish-subscribe is an asynchronous pattern, where the arrival and processing
of data does not need to immediately trigger a subsequent execution

▶ Enables many components to receive the same message

▶ The publisher is not blocked after publishing a message

▶ Very useful for data arriving at high frequencies (e.g. sensor data)
http://docs.ros.org/en/humble/Tutorials/

Beginner-CLI-Tools/Understanding-ROS2-Topics/
Understanding-ROS2-Topics.html

Service-client is a synchronous pattern, where a request from a client triggers
an immediate execution from the server, which then sends a response back to
the client

▶ Enables peer-to-peer communication between components

▶ The client is blocked after calling the server and waits until the server
responds back or times out — but ROS2 allows asynchronous requests

▶ Useful when the execution of the caller depends on something provided by
the server (e.g. retrieving data from a robot’s knowledge base) http://docs.ros.org/en/humble/Tutorials/

Beginner-CLI-Tools/Understanding-ROS2-Services/
Understanding-ROS2-Services.html

Tools for Robot Software Development 8 / 35

http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.html

Robot Operating System (ROS)1

▶ ROS is a middleware that enables developing complex applications for robots

▶ The major driver for ROS is its open source nature, which invites community contributions

▶ ROS has traditionally been dominated by two programming languages — Python and C++
— although other languages are supported as well

▶ The original ROS was superceded by ROS2 a few years ago; new Ubuntu distributions (since
22.04) only support ROS2

You were already introduced to ROS in the MAS Foundations Course — we will not repeat how it works
in this lecture

1https://www.ros.org

Tools for Robot Software Development 9 / 35

https://www.ros.org

Robot Operating System (ROS)1

▶ ROS is a middleware that enables developing complex applications for robots

▶ The major driver for ROS is its open source nature, which invites community contributions

▶ ROS has traditionally been dominated by two programming languages — Python and C++
— although other languages are supported as well

▶ The original ROS was superceded by ROS2 a few years ago; new Ubuntu distributions (since
22.04) only support ROS2

You were already introduced to ROS in the MAS Foundations Course — we will not repeat how it works
in this lecture

1https://www.ros.org

Tools for Robot Software Development 9 / 35

https://www.ros.org

Robot Operating System (ROS)1

▶ ROS is a middleware that enables developing complex applications for robots

▶ The major driver for ROS is its open source nature, which invites community contributions

▶ ROS has traditionally been dominated by two programming languages — Python and C++
— although other languages are supported as well

▶ The original ROS was superceded by ROS2 a few years ago; new Ubuntu distributions (since
22.04) only support ROS2

You were already introduced to ROS in the MAS Foundations Course — we will not repeat how it works
in this lecture

1https://www.ros.org

Tools for Robot Software Development 9 / 35

https://www.ros.org

Robot Operating System (ROS)1

▶ ROS is a middleware that enables developing complex applications for robots

▶ The major driver for ROS is its open source nature, which invites community contributions

▶ ROS has traditionally been dominated by two programming languages — Python and C++
— although other languages are supported as well

▶ The original ROS was superceded by ROS2 a few years ago; new Ubuntu distributions (since
22.04) only support ROS2

You were already introduced to ROS in the MAS Foundations Course — we will not repeat how it works
in this lecture

1https://www.ros.org

Tools for Robot Software Development 9 / 35

https://www.ros.org

Robot Operating System (ROS)1

▶ ROS is a middleware that enables developing complex applications for robots

▶ The major driver for ROS is its open source nature, which invites community contributions

▶ ROS has traditionally been dominated by two programming languages — Python and C++
— although other languages are supported as well

▶ The original ROS was superceded by ROS2 a few years ago; new Ubuntu distributions (since
22.04) only support ROS2

You were already introduced to ROS in the MAS Foundations Course — we will not repeat how it works
in this lecture

1https://www.ros.org

Tools for Robot Software Development 9 / 35

https://www.ros.org

ROS Services vs. Actions

http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/
Understanding-ROS2-Actions/Understanding-ROS2-Actions.html

▶ In addition to services, ROS also includes the
concept of actions — as in the case of services, the
provider of an action is called an action server
and the caller is an action client

▶ Actions are meant for long(er)-running
operations during which feedback on the server’s
execution can be received

▶ ROS actions are intuitively a suitable concept for
managing the execution of robot actions (e.g.
picking an object)

▶ Actions are executed asynchronously — the
execution of the caller is not blocked while the
action server is running

▶ Calling an action server is not peer-to-peer
communication — actions expose ROS topics

Tools for Robot Software Development 10 / 35

http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html

ROS Services vs. Actions

http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/
Understanding-ROS2-Actions/Understanding-ROS2-Actions.html

▶ In addition to services, ROS also includes the
concept of actions — as in the case of services, the
provider of an action is called an action server
and the caller is an action client

▶ Actions are meant for long(er)-running
operations during which feedback on the server’s
execution can be received

▶ ROS actions are intuitively a suitable concept for
managing the execution of robot actions (e.g.
picking an object)

▶ Actions are executed asynchronously — the
execution of the caller is not blocked while the
action server is running

▶ Calling an action server is not peer-to-peer
communication — actions expose ROS topics

Tools for Robot Software Development 10 / 35

http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html

ROS Services vs. Actions

http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/
Understanding-ROS2-Actions/Understanding-ROS2-Actions.html

▶ In addition to services, ROS also includes the
concept of actions — as in the case of services, the
provider of an action is called an action server
and the caller is an action client

▶ Actions are meant for long(er)-running
operations during which feedback on the server’s
execution can be received

▶ ROS actions are intuitively a suitable concept for
managing the execution of robot actions (e.g.
picking an object)

▶ Actions are executed asynchronously — the
execution of the caller is not blocked while the
action server is running

▶ Calling an action server is not peer-to-peer
communication — actions expose ROS topics

Tools for Robot Software Development 10 / 35

http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html

ROS Services vs. Actions

http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/
Understanding-ROS2-Actions/Understanding-ROS2-Actions.html

▶ In addition to services, ROS also includes the
concept of actions — as in the case of services, the
provider of an action is called an action server
and the caller is an action client

▶ Actions are meant for long(er)-running
operations during which feedback on the server’s
execution can be received

▶ ROS actions are intuitively a suitable concept for
managing the execution of robot actions (e.g.
picking an object)

▶ Actions are executed asynchronously — the
execution of the caller is not blocked while the
action server is running

▶ Calling an action server is not peer-to-peer
communication — actions expose ROS topics

Tools for Robot Software Development 10 / 35

http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html
http://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.html

Problems with ROS

▶ ROS is a rather large framework — it has lots of dependencies and components that are part of
the framework by default

▶ It does not make much sense to install and use ROS in cases where simple communication between
components is desired

▶ Overreliance on ROS can encourage “lazy” development that does not follow good
development practices

▶ Network communication is slow and not very reliable — ideally, it should be avoided whenever
possible, particularly for operations that require high frequency and high reliability

▶ We will now look at a few alternatives to ROS, which can be more suitable to use in some cases

Tools for Robot Software Development 11 / 35

Problems with ROS

▶ ROS is a rather large framework — it has lots of dependencies and components that are part of
the framework by default

▶ It does not make much sense to install and use ROS in cases where simple communication between
components is desired

▶ Overreliance on ROS can encourage “lazy” development that does not follow good
development practices

▶ Network communication is slow and not very reliable — ideally, it should be avoided whenever
possible, particularly for operations that require high frequency and high reliability

▶ We will now look at a few alternatives to ROS, which can be more suitable to use in some cases

Tools for Robot Software Development 11 / 35

Problems with ROS

▶ ROS is a rather large framework — it has lots of dependencies and components that are part of
the framework by default

▶ It does not make much sense to install and use ROS in cases where simple communication between
components is desired

▶ Overreliance on ROS can encourage “lazy” development that does not follow good
development practices

▶ Network communication is slow and not very reliable — ideally, it should be avoided whenever
possible, particularly for operations that require high frequency and high reliability

▶ We will now look at a few alternatives to ROS, which can be more suitable to use in some cases

Tools for Robot Software Development 11 / 35

ZeroMQ (ZMQ)2

▶ ZMQ is a more lightweight communication
framework, where message exchange
occurs without a broker

▶ Communication in ZMQ is performed
over sockets of different types, which can
use different protocols (e.g. TCP)

▶ ZMQ supports the same communication
patterns as ROS — publish-subscribe and
service-client can both be implemented

▶ While ROS primarily supports C++ and
Python, ZMQ supports a large variety of
languages, which provides larger
development flexibility

Adapted from https://github.com/alex-mitrevski/action-execution

class ExecutionDataLogger(object):
def __init__(self, port):

self.context = zmq.Context()
self.socket = self.context.socket(zmq.PUB)
self.socket.bind("tcp://*:{0}".format(port))

def log_model_data(self, action_name, document_data):
json_data = json.dumps(document_data)
self.socket.send_multipart([bytearray(action_name, ’utf8’),

bytearray(json_data, ’utf8’)])

Adapted from https://github.com/ropod-project/black-box

class JsonZmqReader(object):
def __init__(self, url, port, topic_params):

self.publisher_url = url
self.port = port
self.context = zmq.Context()
self.socket = self.context.socket(zmq.SUB)
self.topic_names = [topic.name for topic in topic_params]
for topic in self.topic_names:

self.socket.setsockopt_string(zmq.SUBSCRIBE, topic)
self.sub_thread = None

def start_logging(self):
self.socket.connect(’{0}:{1}’.format(self.publisher_url,

self.port))
self.sub_thread = threading.Thread(target=self.log_msg)
self.sub_thread.start()

def log_msg(self):
topic, msg = self.socket.recv_multipart()
process the message

2https://zeromq.org

Tools for Robot Software Development 12 / 35

https://github.com/alex-mitrevski/action-execution
https://github.com/ropod-project/black-box
https://zeromq.org

ZeroMQ (ZMQ)2

▶ ZMQ is a more lightweight communication
framework, where message exchange
occurs without a broker

▶ Communication in ZMQ is performed
over sockets of different types, which can
use different protocols (e.g. TCP)

▶ ZMQ supports the same communication
patterns as ROS — publish-subscribe and
service-client can both be implemented

▶ While ROS primarily supports C++ and
Python, ZMQ supports a large variety of
languages, which provides larger
development flexibility

Adapted from https://github.com/alex-mitrevski/action-execution

class ExecutionDataLogger(object):
def __init__(self, port):

self.context = zmq.Context()
self.socket = self.context.socket(zmq.PUB)
self.socket.bind("tcp://*:{0}".format(port))

def log_model_data(self, action_name, document_data):
json_data = json.dumps(document_data)
self.socket.send_multipart([bytearray(action_name, ’utf8’),

bytearray(json_data, ’utf8’)])

Adapted from https://github.com/ropod-project/black-box

class JsonZmqReader(object):
def __init__(self, url, port, topic_params):

self.publisher_url = url
self.port = port
self.context = zmq.Context()
self.socket = self.context.socket(zmq.SUB)
self.topic_names = [topic.name for topic in topic_params]
for topic in self.topic_names:

self.socket.setsockopt_string(zmq.SUBSCRIBE, topic)
self.sub_thread = None

def start_logging(self):
self.socket.connect(’{0}:{1}’.format(self.publisher_url,

self.port))
self.sub_thread = threading.Thread(target=self.log_msg)
self.sub_thread.start()

def log_msg(self):
topic, msg = self.socket.recv_multipart()
process the message

2https://zeromq.org

Tools for Robot Software Development 12 / 35

https://github.com/alex-mitrevski/action-execution
https://github.com/ropod-project/black-box
https://zeromq.org

ZeroMQ (ZMQ)2

▶ ZMQ is a more lightweight communication
framework, where message exchange
occurs without a broker

▶ Communication in ZMQ is performed
over sockets of different types, which can
use different protocols (e.g. TCP)

▶ ZMQ supports the same communication
patterns as ROS — publish-subscribe and
service-client can both be implemented

▶ While ROS primarily supports C++ and
Python, ZMQ supports a large variety of
languages, which provides larger
development flexibility

Adapted from https://github.com/alex-mitrevski/action-execution

class ExecutionDataLogger(object):
def __init__(self, port):

self.context = zmq.Context()
self.socket = self.context.socket(zmq.PUB)
self.socket.bind("tcp://*:{0}".format(port))

def log_model_data(self, action_name, document_data):
json_data = json.dumps(document_data)
self.socket.send_multipart([bytearray(action_name, ’utf8’),

bytearray(json_data, ’utf8’)])

Adapted from https://github.com/ropod-project/black-box

class JsonZmqReader(object):
def __init__(self, url, port, topic_params):

self.publisher_url = url
self.port = port
self.context = zmq.Context()
self.socket = self.context.socket(zmq.SUB)
self.topic_names = [topic.name for topic in topic_params]
for topic in self.topic_names:

self.socket.setsockopt_string(zmq.SUBSCRIBE, topic)
self.sub_thread = None

def start_logging(self):
self.socket.connect(’{0}:{1}’.format(self.publisher_url,

self.port))
self.sub_thread = threading.Thread(target=self.log_msg)
self.sub_thread.start()

def log_msg(self):
topic, msg = self.socket.recv_multipart()
process the message

2https://zeromq.org

Tools for Robot Software Development 12 / 35

https://github.com/alex-mitrevski/action-execution
https://github.com/ropod-project/black-box
https://zeromq.org

ZeroMQ (ZMQ)2

▶ ZMQ is a more lightweight communication
framework, where message exchange
occurs without a broker

▶ Communication in ZMQ is performed
over sockets of different types, which can
use different protocols (e.g. TCP)

▶ ZMQ supports the same communication
patterns as ROS — publish-subscribe and
service-client can both be implemented

▶ While ROS primarily supports C++ and
Python, ZMQ supports a large variety of
languages, which provides larger
development flexibility

Adapted from https://github.com/alex-mitrevski/action-execution

class ExecutionDataLogger(object):
def __init__(self, port):

self.context = zmq.Context()
self.socket = self.context.socket(zmq.PUB)
self.socket.bind("tcp://*:{0}".format(port))

def log_model_data(self, action_name, document_data):
json_data = json.dumps(document_data)
self.socket.send_multipart([bytearray(action_name, ’utf8’),

bytearray(json_data, ’utf8’)])

Adapted from https://github.com/ropod-project/black-box

class JsonZmqReader(object):
def __init__(self, url, port, topic_params):

self.publisher_url = url
self.port = port
self.context = zmq.Context()
self.socket = self.context.socket(zmq.SUB)
self.topic_names = [topic.name for topic in topic_params]
for topic in self.topic_names:

self.socket.setsockopt_string(zmq.SUBSCRIBE, topic)
self.sub_thread = None

def start_logging(self):
self.socket.connect(’{0}:{1}’.format(self.publisher_url,

self.port))
self.sub_thread = threading.Thread(target=self.log_msg)
self.sub_thread.start()

def log_msg(self):
topic, msg = self.socket.recv_multipart()
process the message

2https://zeromq.org

Tools for Robot Software Development 12 / 35

https://github.com/alex-mitrevski/action-execution
https://github.com/ropod-project/black-box
https://zeromq.org

ZeroMQ (ZMQ)2

▶ ZMQ is a more lightweight communication
framework, where message exchange
occurs without a broker

▶ Communication in ZMQ is performed
over sockets of different types, which can
use different protocols (e.g. TCP)

▶ ZMQ supports the same communication
patterns as ROS — publish-subscribe and
service-client can both be implemented

▶ While ROS primarily supports C++ and
Python, ZMQ supports a large variety of
languages, which provides larger
development flexibility

Adapted from https://github.com/alex-mitrevski/action-execution

class ExecutionDataLogger(object):
def __init__(self, port):

self.context = zmq.Context()
self.socket = self.context.socket(zmq.PUB)
self.socket.bind("tcp://*:{0}".format(port))

def log_model_data(self, action_name, document_data):
json_data = json.dumps(document_data)
self.socket.send_multipart([bytearray(action_name, ’utf8’),

bytearray(json_data, ’utf8’)])

Adapted from https://github.com/ropod-project/black-box

class JsonZmqReader(object):
def __init__(self, url, port, topic_params):

self.publisher_url = url
self.port = port
self.context = zmq.Context()
self.socket = self.context.socket(zmq.SUB)
self.topic_names = [topic.name for topic in topic_params]
for topic in self.topic_names:

self.socket.setsockopt_string(zmq.SUBSCRIBE, topic)
self.sub_thread = None

def start_logging(self):
self.socket.connect(’{0}:{1}’.format(self.publisher_url,

self.port))
self.sub_thread = threading.Thread(target=self.log_msg)
self.sub_thread.start()

def log_msg(self):
topic, msg = self.socket.recv_multipart()
process the message

2https://zeromq.org

Tools for Robot Software Development 12 / 35

https://github.com/alex-mitrevski/action-execution
https://github.com/ropod-project/black-box
https://zeromq.org

ZeroMQ (ZMQ)2

▶ ZMQ is a more lightweight communication
framework, where message exchange
occurs without a broker

▶ Communication in ZMQ is performed
over sockets of different types, which can
use different protocols (e.g. TCP)

▶ ZMQ supports the same communication
patterns as ROS — publish-subscribe and
service-client can both be implemented

▶ While ROS primarily supports C++ and
Python, ZMQ supports a large variety of
languages, which provides larger
development flexibility

Adapted from https://github.com/alex-mitrevski/action-execution

class ExecutionDataLogger(object):
def __init__(self, port):

self.context = zmq.Context()
self.socket = self.context.socket(zmq.PUB)
self.socket.bind("tcp://*:{0}".format(port))

def log_model_data(self, action_name, document_data):
json_data = json.dumps(document_data)
self.socket.send_multipart([bytearray(action_name, ’utf8’),

bytearray(json_data, ’utf8’)])

Adapted from https://github.com/ropod-project/black-box

class JsonZmqReader(object):
def __init__(self, url, port, topic_params):

self.publisher_url = url
self.port = port
self.context = zmq.Context()
self.socket = self.context.socket(zmq.SUB)
self.topic_names = [topic.name for topic in topic_params]
for topic in self.topic_names:

self.socket.setsockopt_string(zmq.SUBSCRIBE, topic)
self.sub_thread = None

def start_logging(self):
self.socket.connect(’{0}:{1}’.format(self.publisher_url,

self.port))
self.sub_thread = threading.Thread(target=self.log_msg)
self.sub_thread.start()

def log_msg(self):
topic, msg = self.socket.recv_multipart()
process the message

2https://zeromq.org

Tools for Robot Software Development 12 / 35

https://github.com/alex-mitrevski/action-execution
https://github.com/ropod-project/black-box
https://zeromq.org

Zyre3

▶ In some robotics applications, network
communication between components needs to be
flexible and the network should enable new
components to join and leave at any point (e.g. in
a multi-robot system)

▶ Zyre is a ZMQ-based library in which named nodes
send UDP beacons, thereby allowing automatic
discovery of components

▶ In Zyre, communication is organised into groups,
which nodes can join or leave as necessary

▶ Communication between Zyre nodes can be
performed by broadcasting messages to all
members of a group (a process known as shouting)
or in a peer-to-peer fashion (a process known as
whispering to a node)

Adapted from https://github.com/ropod-project/black-box

class BlackBoxQueryInterface(RopodPyre):
def __init__(self, data_sources, black_box_id, groups):

super(BlackBoxQueryInterface, self).__init__({’node_name’
: black_box_id + ’_query_interface’, ’groups’:
groups, ’message_types’: list()})

self.data_sources = data_sources
self.black_box_id = black_box_id
self.start()

def zyre_event_cb(self, zyre_msg):
if zyre_msg.msg_type in ("SHOUT", "WHISPER"):

response_msg = self.receive_msg_cb(zyre_msg.
msg_content)

if response_msg:
self.whisper(response_msg, zyre_msg.peer_uuid)

def receive_msg_cb(self, msg):
dict_msg = self.convert_zyre_msg_to_dict(msg)
if dict_msg is None:

return

message_type = dict_msg[’header’][’type’]
variable_data = dict()
for data_source in self.data_sources:

variable_data[data_source] = self.db_interface.
get_variables(data_source)

response_msg = self.__get_response_msg_skeleton(
message_type)

response_msg[’payload’][’receiverId’] = dict_msg[’payload
’][’senderId’]

response_msg[’payload’][’variableList’] = variable_data
return response_msg

3https://github.com/zeromq/zyre

Tools for Robot Software Development 13 / 35

https://github.com/ropod-project/black-box
https://github.com/zeromq/zyre

Zyre3

▶ In some robotics applications, network
communication between components needs to be
flexible and the network should enable new
components to join and leave at any point (e.g. in
a multi-robot system)

▶ Zyre is a ZMQ-based library in which named nodes
send UDP beacons, thereby allowing automatic
discovery of components

▶ In Zyre, communication is organised into groups,
which nodes can join or leave as necessary

▶ Communication between Zyre nodes can be
performed by broadcasting messages to all
members of a group (a process known as shouting)
or in a peer-to-peer fashion (a process known as
whispering to a node)

Adapted from https://github.com/ropod-project/black-box

class BlackBoxQueryInterface(RopodPyre):
def __init__(self, data_sources, black_box_id, groups):

super(BlackBoxQueryInterface, self).__init__({’node_name’
: black_box_id + ’_query_interface’, ’groups’:
groups, ’message_types’: list()})

self.data_sources = data_sources
self.black_box_id = black_box_id
self.start()

def zyre_event_cb(self, zyre_msg):
if zyre_msg.msg_type in ("SHOUT", "WHISPER"):

response_msg = self.receive_msg_cb(zyre_msg.
msg_content)

if response_msg:
self.whisper(response_msg, zyre_msg.peer_uuid)

def receive_msg_cb(self, msg):
dict_msg = self.convert_zyre_msg_to_dict(msg)
if dict_msg is None:

return

message_type = dict_msg[’header’][’type’]
variable_data = dict()
for data_source in self.data_sources:

variable_data[data_source] = self.db_interface.
get_variables(data_source)

response_msg = self.__get_response_msg_skeleton(
message_type)

response_msg[’payload’][’receiverId’] = dict_msg[’payload
’][’senderId’]

response_msg[’payload’][’variableList’] = variable_data
return response_msg

3https://github.com/zeromq/zyre

Tools for Robot Software Development 13 / 35

https://github.com/ropod-project/black-box
https://github.com/zeromq/zyre

Zyre3

▶ In some robotics applications, network
communication between components needs to be
flexible and the network should enable new
components to join and leave at any point (e.g. in
a multi-robot system)

▶ Zyre is a ZMQ-based library in which named nodes
send UDP beacons, thereby allowing automatic
discovery of components

▶ In Zyre, communication is organised into groups,
which nodes can join or leave as necessary

▶ Communication between Zyre nodes can be
performed by broadcasting messages to all
members of a group (a process known as shouting)
or in a peer-to-peer fashion (a process known as
whispering to a node)

Adapted from https://github.com/ropod-project/black-box

class BlackBoxQueryInterface(RopodPyre):
def __init__(self, data_sources, black_box_id, groups):

super(BlackBoxQueryInterface, self).__init__({’node_name’
: black_box_id + ’_query_interface’, ’groups’:
groups, ’message_types’: list()})

self.data_sources = data_sources
self.black_box_id = black_box_id
self.start()

def zyre_event_cb(self, zyre_msg):
if zyre_msg.msg_type in ("SHOUT", "WHISPER"):

response_msg = self.receive_msg_cb(zyre_msg.
msg_content)

if response_msg:
self.whisper(response_msg, zyre_msg.peer_uuid)

def receive_msg_cb(self, msg):
dict_msg = self.convert_zyre_msg_to_dict(msg)
if dict_msg is None:

return

message_type = dict_msg[’header’][’type’]
variable_data = dict()
for data_source in self.data_sources:

variable_data[data_source] = self.db_interface.
get_variables(data_source)

response_msg = self.__get_response_msg_skeleton(
message_type)

response_msg[’payload’][’receiverId’] = dict_msg[’payload
’][’senderId’]

response_msg[’payload’][’variableList’] = variable_data
return response_msg

3https://github.com/zeromq/zyre

Tools for Robot Software Development 13 / 35

https://github.com/ropod-project/black-box
https://github.com/zeromq/zyre

Zyre3

▶ In some robotics applications, network
communication between components needs to be
flexible and the network should enable new
components to join and leave at any point (e.g. in
a multi-robot system)

▶ Zyre is a ZMQ-based library in which named nodes
send UDP beacons, thereby allowing automatic
discovery of components

▶ In Zyre, communication is organised into groups,
which nodes can join or leave as necessary

▶ Communication between Zyre nodes can be
performed by broadcasting messages to all
members of a group (a process known as shouting)
or in a peer-to-peer fashion (a process known as
whispering to a node)

Adapted from https://github.com/ropod-project/black-box

class BlackBoxQueryInterface(RopodPyre):
def __init__(self, data_sources, black_box_id, groups):

super(BlackBoxQueryInterface, self).__init__({’node_name’
: black_box_id + ’_query_interface’, ’groups’:
groups, ’message_types’: list()})

self.data_sources = data_sources
self.black_box_id = black_box_id
self.start()

def zyre_event_cb(self, zyre_msg):
if zyre_msg.msg_type in ("SHOUT", "WHISPER"):

response_msg = self.receive_msg_cb(zyre_msg.
msg_content)

if response_msg:
self.whisper(response_msg, zyre_msg.peer_uuid)

def receive_msg_cb(self, msg):
dict_msg = self.convert_zyre_msg_to_dict(msg)
if dict_msg is None:

return

message_type = dict_msg[’header’][’type’]
variable_data = dict()
for data_source in self.data_sources:

variable_data[data_source] = self.db_interface.
get_variables(data_source)

response_msg = self.__get_response_msg_skeleton(
message_type)

response_msg[’payload’][’receiverId’] = dict_msg[’payload
’][’senderId’]

response_msg[’payload’][’variableList’] = variable_data
return response_msg

3https://github.com/zeromq/zyre

Tools for Robot Software Development 13 / 35

https://github.com/ropod-project/black-box
https://github.com/zeromq/zyre

Zyre3

▶ In some robotics applications, network
communication between components needs to be
flexible and the network should enable new
components to join and leave at any point (e.g. in
a multi-robot system)

▶ Zyre is a ZMQ-based library in which named nodes
send UDP beacons, thereby allowing automatic
discovery of components

▶ In Zyre, communication is organised into groups,
which nodes can join or leave as necessary

▶ Communication between Zyre nodes can be
performed by broadcasting messages to all
members of a group (a process known as shouting)
or in a peer-to-peer fashion (a process known as
whispering to a node)

Adapted from https://github.com/ropod-project/black-box

class BlackBoxQueryInterface(RopodPyre):
def __init__(self, data_sources, black_box_id, groups):

super(BlackBoxQueryInterface, self).__init__({’node_name’
: black_box_id + ’_query_interface’, ’groups’:
groups, ’message_types’: list()})

self.data_sources = data_sources
self.black_box_id = black_box_id
self.start()

def zyre_event_cb(self, zyre_msg):
if zyre_msg.msg_type in ("SHOUT", "WHISPER"):

response_msg = self.receive_msg_cb(zyre_msg.
msg_content)

if response_msg:
self.whisper(response_msg, zyre_msg.peer_uuid)

def receive_msg_cb(self, msg):
dict_msg = self.convert_zyre_msg_to_dict(msg)
if dict_msg is None:

return

message_type = dict_msg[’header’][’type’]
variable_data = dict()
for data_source in self.data_sources:

variable_data[data_source] = self.db_interface.
get_variables(data_source)

response_msg = self.__get_response_msg_skeleton(
message_type)

response_msg[’payload’][’receiverId’] = dict_msg[’payload
’][’senderId’]

response_msg[’payload’][’variableList’] = variable_data
return response_msg

3https://github.com/zeromq/zyre

Tools for Robot Software Development 13 / 35

https://github.com/ropod-project/black-box
https://github.com/zeromq/zyre

Message Structure

▶ When working with distributed systems, it is essential to define a standard message structure so
that all components can send messages based on that structure and also know how to
process incoming messages

▶ In ROS, only registered message types (predefined or custom) can be sent between
components

▶ This prior definition enables automatic code generation from the message descriptions

▶ Filling out such messages minimises the possibility for introducing data errors

▶ Frameworks such as ZMQ are not strict in this respect, as messages are always sent as strings

▶ Standard data formats (such as JSON) are often used for structuring messages in this case

▶ Defining (general or concrete) message schemas is a good idea — such schemas can define the
expected fields, their types, or even the allowed values

Tools for Robot Software Development 14 / 35

Message Structure

▶ When working with distributed systems, it is essential to define a standard message structure so
that all components can send messages based on that structure and also know how to
process incoming messages

▶ In ROS, only registered message types (predefined or custom) can be sent between
components

▶ This prior definition enables automatic code generation from the message descriptions

▶ Filling out such messages minimises the possibility for introducing data errors

▶ Frameworks such as ZMQ are not strict in this respect, as messages are always sent as strings

▶ Standard data formats (such as JSON) are often used for structuring messages in this case

▶ Defining (general or concrete) message schemas is a good idea — such schemas can define the
expected fields, their types, or even the allowed values

Tools for Robot Software Development 14 / 35

Message Structure

▶ When working with distributed systems, it is essential to define a standard message structure so
that all components can send messages based on that structure and also know how to
process incoming messages

▶ In ROS, only registered message types (predefined or custom) can be sent between
components

▶ This prior definition enables automatic code generation from the message descriptions

▶ Filling out such messages minimises the possibility for introducing data errors

▶ Frameworks such as ZMQ are not strict in this respect, as messages are always sent as strings

▶ Standard data formats (such as JSON) are often used for structuring messages in this case

▶ Defining (general or concrete) message schemas is a good idea — such schemas can define the
expected fields, their types, or even the allowed values

Tools for Robot Software Development 14 / 35

Behaviour Management: State Machines and Behaviour Trees

Tools for Robot Software Development 15 / 35

Robot Behaviour Management: The Essence of Robot Software
Development

▶ One essential question when developing robot software is which formalism to use for
representing and managing the runtime behaviour of robot operations

▶ Robots are complex systems, but their behaviour can often be decomposed into well-defined
functionalities

▶ The standard and most common way of behaviour management is using finite-state machines

▶ In the last few years, behaviour trees have become a popular alternative to state machines

▶ A prominent example that uses behaviour trees is the navigation stack in ROS2:
https://navigation.ros.org/index.html

Tools for Robot Software Development 16 / 35

https://navigation.ros.org/index.html

Robot Behaviour Management: The Essence of Robot Software
Development

▶ One essential question when developing robot software is which formalism to use for
representing and managing the runtime behaviour of robot operations

▶ Robots are complex systems, but their behaviour can often be decomposed into well-defined
functionalities

▶ The standard and most common way of behaviour management is using finite-state machines

▶ In the last few years, behaviour trees have become a popular alternative to state machines

▶ A prominent example that uses behaviour trees is the navigation stack in ROS2:
https://navigation.ros.org/index.html

Tools for Robot Software Development 16 / 35

https://navigation.ros.org/index.html

Robot Behaviour Management: The Essence of Robot Software
Development

▶ One essential question when developing robot software is which formalism to use for
representing and managing the runtime behaviour of robot operations

▶ Robots are complex systems, but their behaviour can often be decomposed into well-defined
functionalities

▶ The standard and most common way of behaviour management is using finite-state machines

▶ In the last few years, behaviour trees have become a popular alternative to state machines

▶ A prominent example that uses behaviour trees is the navigation stack in ROS2:
https://navigation.ros.org/index.html

Tools for Robot Software Development 16 / 35

https://navigation.ros.org/index.html

State Machine Definition

▶ A (finite)-state machine models a computational process through a finite set of states

▶ At each time, a system is in one of the states and can transition to other states (including
self-transitions)

▶ States typically also receive inputs and produce outputs (from predefined sets)

“A finite-state machine M = (S, I,O, f, g, s0) consists of a finite set S of states, a finite input
alphabet I, a finite output alphabet O, a transition function f that assigns to each state and input pair a
new state, an output function g that assigns to each state and input pair an output, and an initial state
s0.” (K. H. Rosen, “Discrete Mathematics and Its Applications”, McGraw-Hill, 4th ed., 1998, p. 641.)

Tools for Robot Software Development 17 / 35

State Machine Illustration

▶ An ilustration of a state machine is shown on
the right — for a robot task of:

1. moving to a table

2. finding an object on it

3. picking the object, and

4. immediately placing it back on the table

▶ In the state machine, rounded rectangles
represent states and labelled edges are
transitions

GO_TO_TABLE

SCAN_TABLE

PLACE_OBJECT

PICK_OBJECT

succeeded

failed_after_retrying

failed_after_retryingfailed_after_retrying

failed_after_retrying

succeeded

succeeded

FAILED DONE

succeeded

failed failed

failed failed

A simple SM for a pick-and-place robot task. A. Mitrevski, “Skill generalisation and
experience acquisition for predicting and avoiding execution failures,” Ph.D.

dissertation, Department of Computer Science, RWTH Aachen University, 2023, p. 51.

Tools for Robot Software Development 18 / 35

Process Management Using State Machines

▶ State machines are useful for managing
long-running processes that can be decomposed
into a discrete set of states of interest

▶ The diagram on the right illustrates one such state
machine that manages a process throughout its
lifecycle and reacts to faults during the operation

▶ ROS2 has managed nodes whose operation is
governed by a similar state machine

CONFIGURING

INITIALISING

RECOVERINGREADY

RUNNING

STOPPED

START

initialise

initialised

initialisation
failed

config
successful

reconfigure

recovery
successful

recover

recover

recovery
successful

recovery
successful

rundone

config
successful

reconfigure

failed
config

failed
recovery

wait

retry
config

continue

A fault-tolerant state machine for managing a long-running process, inspired
by the state machine of Linux processes

(https://tldp.org/LDP/tlk/kernel/processes.html). A. Mitrevski, “Skill
generalisation and experience acquisition for predicting and avoiding execution

failures,” Ph.D. dissertation, Department of Computer Science, RWTH
Aachen University, 2023, p. 56.

Tools for Robot Software Development 19 / 35

https://tldp.org/LDP/tlk/kernel/processes.html

SMACH

▶ SMACH (pronounced “smash”) is a standard
library for state machine development in
ROS

▶ In SMACH, each state is a separate class
with a method execute, which is called every
time a robot is in that state

▶ Data sharing within the state machine is made
possible by a shared structure called
userdata, which is a dictionary where
user-defined input and output entries are
stored

▶ For each state, the input / output userdata
keys that are used within the state need to be
defined explicitly

class PickObject(RosState):
def __init__(self, node, robot):

RosState.__init__(self, node, robot,
total_retries=3,
outcomes=[’retry’, ’done’, ’failed’],
input_keys=[’object_to_grasp’],
output_keys=[’grasping_arm’])

self.robot = robot
self.number_of_retries = 0
self.total_retries = total_retries

def execute(self, userdata):
object = userdata.object_to_grasp

perform necessary activities for
picking up the object with the robot
success, grasping_arm = self.robot.grasp(object)

if success:
userdata.grasping_arm = grasping_arm
return ’done’

else:
if self.number_of_retries < self.total_retries:

return ’retry’
else:

self.number_of_retries = 0
return ’failed’

sm = StateMachine([’done’, ’failed’])
with sm:

StateMachine.add(’PICK_OBJECT’, PickObject(node), {’done’:’
PLACE_OBJECT’, ’retry’: ’PICK_OBJECT’, ’failed’: ’
failed’})

StateMachine.add(’PLACE_OBJECT’, PlaceObject(node), {’done’:’
done’, ’retry’: ’PLACE_OBJECT’, ’failed’: ’failed’})

Tools for Robot Software Development 20 / 35

SMACH

▶ SMACH (pronounced “smash”) is a standard
library for state machine development in
ROS

▶ In SMACH, each state is a separate class
with a method execute, which is called every
time a robot is in that state

▶ Data sharing within the state machine is made
possible by a shared structure called
userdata, which is a dictionary where
user-defined input and output entries are
stored

▶ For each state, the input / output userdata
keys that are used within the state need to be
defined explicitly

class PickObject(RosState):
def __init__(self, node, robot):

RosState.__init__(self, node, robot,
total_retries=3,
outcomes=[’retry’, ’done’, ’failed’],
input_keys=[’object_to_grasp’],
output_keys=[’grasping_arm’])

self.robot = robot
self.number_of_retries = 0
self.total_retries = total_retries

def execute(self, userdata):
object = userdata.object_to_grasp

perform necessary activities for
picking up the object with the robot
success, grasping_arm = self.robot.grasp(object)

if success:
userdata.grasping_arm = grasping_arm
return ’done’

else:
if self.number_of_retries < self.total_retries:

return ’retry’
else:

self.number_of_retries = 0
return ’failed’

sm = StateMachine([’done’, ’failed’])
with sm:

StateMachine.add(’PICK_OBJECT’, PickObject(node), {’done’:’
PLACE_OBJECT’, ’retry’: ’PICK_OBJECT’, ’failed’: ’
failed’})

StateMachine.add(’PLACE_OBJECT’, PlaceObject(node), {’done’:’
done’, ’retry’: ’PLACE_OBJECT’, ’failed’: ’failed’})

Tools for Robot Software Development 20 / 35

SMACH

▶ SMACH (pronounced “smash”) is a standard
library for state machine development in
ROS

▶ In SMACH, each state is a separate class
with a method execute, which is called every
time a robot is in that state

▶ Data sharing within the state machine is made
possible by a shared structure called
userdata, which is a dictionary where
user-defined input and output entries are
stored

▶ For each state, the input / output userdata
keys that are used within the state need to be
defined explicitly

class PickObject(RosState):
def __init__(self, node, robot):

RosState.__init__(self, node, robot,
total_retries=3,
outcomes=[’retry’, ’done’, ’failed’],
input_keys=[’object_to_grasp’],
output_keys=[’grasping_arm’])

self.robot = robot
self.number_of_retries = 0
self.total_retries = total_retries

def execute(self, userdata):
object = userdata.object_to_grasp

perform necessary activities for
picking up the object with the robot
success, grasping_arm = self.robot.grasp(object)

if success:
userdata.grasping_arm = grasping_arm
return ’done’

else:
if self.number_of_retries < self.total_retries:

return ’retry’
else:

self.number_of_retries = 0
return ’failed’

sm = StateMachine([’done’, ’failed’])
with sm:

StateMachine.add(’PICK_OBJECT’, PickObject(node), {’done’:’
PLACE_OBJECT’, ’retry’: ’PICK_OBJECT’, ’failed’: ’
failed’})

StateMachine.add(’PLACE_OBJECT’, PlaceObject(node), {’done’:’
done’, ’retry’: ’PLACE_OBJECT’, ’failed’: ’failed’})

Tools for Robot Software Development 20 / 35

Behaviour Tree Definition

▶ A behaviour tree organises the behaviour of a robot into
behaviours, which are nodes that execute based on
predefined rules

▶ The execution of a behaviour tree is coordinated by
signals called ticks, which are sent from the root node
and propagated to the children nodes

▶ Nodes in a behaviour tree can be defined
hierarchically — a node can itself be a tree

“A behaviour tree is a directed rooted tree where the internal nodes are called control flow nodes and
leaf nodes are called execution nodes... The root is the node without parents; all other nodes have one
parent. The control flow nodes have at least one child.” (M. Colledanchise and P. Ögren, “Behavior
Trees in Robotics and AI: An Introduction,” CRC Press - Taylor and Francis Group, 2018, p. 6.)

Tools for Robot Software Development 21 / 35

Behaviour Tree Node Types

...

Sequence node

Fallback node

Parallel node

...

Node types

...

...

Condition node

Action node

Decorator node

Tools for Robot Software Development 22 / 35

Sequence, Fallback, and Parallel Nodes
Sequence node

▶ Returns Success if all children succeed

▶ Returns Failure or Running if any of the children (from left to
right) return those

Fallback node

▶ Returns Failure if all children return that

▶ Returns Success or Running if any of the children (from left to
right) return those

Parallel node

▶ Returns Success if m ≤ n of its children return that

▶ Returns Failure if n−m+ 1 children return that

▶ Returns Running Otherwise

Tools for Robot Software Development 23 / 35

Sequence, Fallback, and Parallel Nodes
Sequence node

▶ Returns Success if all children succeed

▶ Returns Failure or Running if any of the children (from left to
right) return those

Fallback node

▶ Returns Failure if all children return that

▶ Returns Success or Running if any of the children (from left to
right) return those

Parallel node

▶ Returns Success if m ≤ n of its children return that

▶ Returns Failure if n−m+ 1 children return that

▶ Returns Running Otherwise

Tools for Robot Software Development 23 / 35

Sequence, Fallback, and Parallel Nodes
Sequence node

▶ Returns Success if all children succeed

▶ Returns Failure or Running if any of the children (from left to
right) return those

Fallback node

▶ Returns Failure if all children return that

▶ Returns Success or Running if any of the children (from left to
right) return those

Parallel node

▶ Returns Success if m ≤ n of its children return that

▶ Returns Failure if n−m+ 1 children return that

▶ Returns Running Otherwise

Tools for Robot Software Development 23 / 35

Action, Condition, and Decorator Nodes

▶ An action node executes a given operation, such that it returns Running if the execution is not
complete, and Success or Failure at the end of the execution depending on the outcome

▶ A condition node returns Success or Failure depending on the result of a given condition

▶ A decorator node can control the return value of a node or send a tick to a node based on certain
predefined conditions

Tools for Robot Software Development 24 / 35

State Machines vs. Behaviour Trees

▶ Finite state machines are based on a well-defined formal framework (automata theory);
behaviour trees are more ad-hoc

▶ Large state machines can be difficult to maintain; behaviour trees are supposed to make
the maintenance easier because they (in principle) enable flexible composition of behaviours

▶ Concurrent execution is supported by default with behaviour trees; this is not the case with
state machines without extra effort

▶ In general, state machines are still more widely accepted and used than behaviour trees

Tools for Robot Software Development 25 / 35

State Machines vs. Behaviour Trees

▶ Finite state machines are based on a well-defined formal framework (automata theory);
behaviour trees are more ad-hoc

▶ Large state machines can be difficult to maintain; behaviour trees are supposed to make
the maintenance easier because they (in principle) enable flexible composition of behaviours

▶ Concurrent execution is supported by default with behaviour trees; this is not the case with
state machines without extra effort

▶ In general, state machines are still more widely accepted and used than behaviour trees

Tools for Robot Software Development 25 / 35

State Machines vs. Behaviour Trees

▶ Finite state machines are based on a well-defined formal framework (automata theory);
behaviour trees are more ad-hoc

▶ Large state machines can be difficult to maintain; behaviour trees are supposed to make
the maintenance easier because they (in principle) enable flexible composition of behaviours

▶ Concurrent execution is supported by default with behaviour trees; this is not the case with
state machines without extra effort

▶ In general, state machines are still more widely accepted and used than behaviour trees

Tools for Robot Software Development 25 / 35

State Machines vs. Behaviour Trees

▶ Finite state machines are based on a well-defined formal framework (automata theory);
behaviour trees are more ad-hoc

▶ Large state machines can be difficult to maintain; behaviour trees are supposed to make
the maintenance easier because they (in principle) enable flexible composition of behaviours

▶ Concurrent execution is supported by default with behaviour trees; this is not the case with
state machines without extra effort

▶ In general, state machines are still more widely accepted and used than behaviour trees

Tools for Robot Software Development 25 / 35

A Bag of (Other) Tools

Tools for Robot Software Development 26 / 35

Robotics is More Than Communication and Behaviour Management

▶ Frameworks for distributed system development and behaviour management represent just one
segment of the robot software development toolbox

▶ Robot software development relies on a variety of (open-source) software frameworks that
provide dedicated functionalities relevant for robotics

▶ Sensor data processing is one area where standard frameworks exist, particularly in the context of
images and point cloud data

▶ Machine learning is another area where the reliance on open and well-maintained libraries is
remarkably obvious

▶ On the following slides, we will briefly introduce a variety of software libraries and frameworks that
are commonly used throughout robot software development

Tools for Robot Software Development 27 / 35

Robotics is More Than Communication and Behaviour Management

▶ Frameworks for distributed system development and behaviour management represent just one
segment of the robot software development toolbox

▶ Robot software development relies on a variety of (open-source) software frameworks that
provide dedicated functionalities relevant for robotics

▶ Sensor data processing is one area where standard frameworks exist, particularly in the context of
images and point cloud data

▶ Machine learning is another area where the reliance on open and well-maintained libraries is
remarkably obvious

▶ On the following slides, we will briefly introduce a variety of software libraries and frameworks that
are commonly used throughout robot software development

Tools for Robot Software Development 27 / 35

PCL4 for Point Cloud Processing

▶ As sensors such as RGB-D cameras and 3D lidars produce
point cloud data, processing point clouds is important for
extracting meaningful information from such data

▶ The Point Cloud Library (PCL) is a library that implements
a large variety of common point cloud processing
algorithms and provides standardised interfaces for
implementing custom processing functionalities

▶ PCL is compatible with ROS (through specialised interfaces
for dealing with ROS messages), which is one reason for its
popularity in robotics applications

https://pcl.readthedocs.io/projects/tutorials/en/master/
walkthrough.html

4https://github.com/PointCloudLibrary/pcl

Tools for Robot Software Development 28 / 35

https://pcl.readthedocs.io/projects/tutorials/en/master/walkthrough.html
https://pcl.readthedocs.io/projects/tutorials/en/master/walkthrough.html
https://github.com/PointCloudLibrary/pcl

Open3D5

▶ One downside of PCL is that it is (only) a C++ library; using it with Python (a very popular
language in robotics) is challenging because there is no officially supported Python interface

▶ Open3D is an alternative point cloud processing library that implements similar functionalities
as PCL, but is fully compatible with Python

▶ Open3D-ML, an extension of Open3D, makes it possible to perform machine learning tasks on 3D
point cloud data

Q-Y. Zhou, J. Park, and V. Koltun, “Open3D: A Modern Library for 3D Data Processing,” arXiv:1801.09847, 2018.

5https://github.com/isl-org/Open3D

Tools for Robot Software Development 29 / 35

https://github.com/isl-org/Open3D

Computer Vision Using OpenCV6

▶ Most robots need to process visual data in some form, so
image processing and, more generally, computer vision tasks
need to be done in different contexts

▶ OpenCV is a standard framework for performing (classical)
image processing tasks, such as noise removal,
morphological transformations, or feature detection

▶ The results of OpenCV can be used as a precursor for
further processing — for instance as features for machine
learning algorithms

https://docs.opencv.org/4.8.0/da/d0c/
tutorial bounding rects circles.html

6https://github.com/opencv/opencv

Tools for Robot Software Development 30 / 35

https://docs.opencv.org/4.8.0/da/d0c/tutorial_bounding_rects_circles.html
https://docs.opencv.org/4.8.0/da/d0c/tutorial_bounding_rects_circles.html
https://github.com/opencv/opencv

Person (Keypoint) Detection Using OpenPose7

▶ In human-robot scenarios, detecting and tracking people are
essential processes for effective interaction and collaboration

▶ OpenPose is a library that detects human skeletons from
RGB images by identifying predefined keypoints on the
human body

▶ 135 keypoints are detected on the arms, legs, neck, head, face,
as well as on the fingers and toes

▶ Keypoint detection is done by a pretrained neural network
model

▶ The ability to perform detection in real time and to handle
occlusions rather reliably is one reason for the library’s
widespread use

Z. Cao et al., “OpenPose: Realtime Multi-Person 2D Pose
Estimation Using Part Affinity Fields,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 43, no.

1, pp. 172–186, Jan. 2021.

7https://github.com/CMU-Perceptual-Computing-Lab/openpose

Tools for Robot Software Development 31 / 35

https://github.com/CMU-Perceptual-Computing-Lab/openpose

scikit-learn8 for Machine Learning

▶ Modern robots use learning-based components for a variety of
tasks; developing machine learning models is thus an
important and common task in contemporary robotics

▶ scikit-learn is an extensive machine learning library in Python,
which includes implementations of many (classical)
learning models and algorithms

▶ The library can also be used for learning with neural networks,
although more specialised libraries exist for that purpose

https://scikit- learn.org/stable/

8https://github.com/scikit- learn/scikit- learn

Tools for Robot Software Development 32 / 35

https://scikit-learn.org/stable/
https://github.com/scikit-learn/scikit-learn

Neural Networks With PyTorch9

▶ Neural network-based machine learning has evolved into an
important component for many tasks in robotics, ranging from
vision to natural language processing

▶ Various libraries for developing neural networks are available,
but PyTorch is a particularly widely used and supported
library

▶ PyTorch (and other similar libraries) represent complex
computations into a computational graph and perform
automatic differentiation, which is what makes them
suitable for handling deep neural networks

https://github.com/pytorch/pytorch

9https://github.com/pytorch/pytorch

Tools for Robot Software Development 33 / 35

https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch

Docker
▶ Docker is a framework that enables development of

containerised applications, which are processes that can run
on any host and are independent of other running processes

▶ Docker containers are created from images, which describe
how the environment for a container should be set up

▶ Docker images can build on each other — derived images
inherit everything that is included in a base image

▶ Containerisation is useful for robot software development
because it simplifies portability of robot software

▶ The host robot that executes a container does not need to
have any software setup that is required by a robot —
everything can be included in the container

▶ Docker is not a Swiss knife though — communication with
and between containers is performed over a network,
which is slower than executing everything directly on the host

https://www.docker.com/resources/what-container/

Tools for Robot Software Development 34 / 35

https://www.docker.com/resources/what-container/

Summary

▶ Various frameworks can be used for developing robots as distributed systems; ROS is the
predominant framework, but others, such as ZMQ and Zyre, can also be useful in certain cases

▶ Robot behaviour can be implemented by following different formalisms, with finite state machines
and behaviour trees being particularly common

▶ Robot software development benefits from many open-source frameworks that are used for a large
number of tasks, such as image and point cloud processing, machine learning, as well as software
sharing and deployment

Tools for Robot Software Development 35 / 35

