
Software Engineering Methodologies
How to Manage the Development Process

Dr. Alex Mitrevski
Master of Autonomous Systems



Structure

▶ Preliminaries

▶ Software engineering methodologies

▶ Agile development

▶ Paradigm challenges and implications for robotics

Software Engineering Methodologies: Managing the Development Process 2 / 29



Preliminaries

Software Engineering Methodologies: Managing the Development Process 3 / 29



Essential Steps in Software Development

▶ In our first lecture, we mentioned the following steps as being essential in software engineering

...

Requirement
elicitation

...

Translating requirements
into software components

...

Software
testing

...

Component
development

▶ There are, however, a variety of ways to perform these steps

Software Engineering Methodologies: Managing the Development Process 4 / 29



Software Engineering Methodology

A software engineering methodology is a domain-independent collection of guidelines and procedures
that define how software should be designed, developed, tested, and managed throughout its lifecycle

▶ Software development, starting from the conceptualisation and up to the deployment, should be
governed by a software engineering methodology (aka a software process)

▶ Without a suitable methodology, the process is highly unlikely to lead to well-developed software

▶ A variety of software engineering methodologies exist in the literature — these are
domain-independent and follow the complete software lifecycle

▶ From an engineering point of view, robots do not differ from other software systems — robot
software development should follow the same procedures as other software products

▶ The practical implementation of individual steps along the process may differ though

Software Engineering Methodologies: Managing the Development Process 5 / 29



Software Engineering Methodology

A software engineering methodology is a domain-independent collection of guidelines and procedures
that define how software should be designed, developed, tested, and managed throughout its lifecycle

▶ Software development, starting from the conceptualisation and up to the deployment, should be
governed by a software engineering methodology (aka a software process)

▶ Without a suitable methodology, the process is highly unlikely to lead to well-developed software

▶ A variety of software engineering methodologies exist in the literature — these are
domain-independent and follow the complete software lifecycle

▶ From an engineering point of view, robots do not differ from other software systems — robot
software development should follow the same procedures as other software products

▶ The practical implementation of individual steps along the process may differ though

Software Engineering Methodologies: Managing the Development Process 5 / 29



Software Engineering Methodology

A software engineering methodology is a domain-independent collection of guidelines and procedures
that define how software should be designed, developed, tested, and managed throughout its lifecycle

▶ Software development, starting from the conceptualisation and up to the deployment, should be
governed by a software engineering methodology (aka a software process)

▶ Without a suitable methodology, the process is highly unlikely to lead to well-developed software

▶ A variety of software engineering methodologies exist in the literature — these are
domain-independent and follow the complete software lifecycle

▶ From an engineering point of view, robots do not differ from other software systems — robot
software development should follow the same procedures as other software products

▶ The practical implementation of individual steps along the process may differ though

Software Engineering Methodologies: Managing the Development Process 5 / 29



Software Engineering Methodology

A software engineering methodology is a domain-independent collection of guidelines and procedures
that define how software should be designed, developed, tested, and managed throughout its lifecycle

▶ Software development, starting from the conceptualisation and up to the deployment, should be
governed by a software engineering methodology (aka a software process)

▶ Without a suitable methodology, the process is highly unlikely to lead to well-developed software

▶ A variety of software engineering methodologies exist in the literature — these are
domain-independent and follow the complete software lifecycle

▶ From an engineering point of view, robots do not differ from other software systems — robot
software development should follow the same procedures as other software products

▶ The practical implementation of individual steps along the process may differ though

Software Engineering Methodologies: Managing the Development Process 5 / 29



Who Decides on the Methodology to Follow?

▶ The decision on the methodology usually depends on the context in which software is
developed:

▶ Large(r) organisations are likely to already have a methodology that all team members need to adopt

▶ Small(er) teams are usually flexible in deciding on an appropriate methodology

▶ There is no one-size-fits-all methodology — how to manage the development process may
depend on several factors, such as:

▶ the size of the team developing the software (larger teams may need more fine-grained
management than smaller teams)

▶ the associated software risks and costs (robots interacting with people pose different risks than
extraterrestrial exploration robots)

▶ the availability of users during the development process (frequent user feedback will shape the
development differently than feedback only at specific milestones)

Software Engineering Methodologies: Managing the Development Process 6 / 29



Who Decides on the Methodology to Follow?

▶ The decision on the methodology usually depends on the context in which software is
developed:

▶ Large(r) organisations are likely to already have a methodology that all team members need to adopt

▶ Small(er) teams are usually flexible in deciding on an appropriate methodology

▶ There is no one-size-fits-all methodology — how to manage the development process may
depend on several factors, such as:

▶ the size of the team developing the software (larger teams may need more fine-grained
management than smaller teams)

▶ the associated software risks and costs (robots interacting with people pose different risks than
extraterrestrial exploration robots)

▶ the availability of users during the development process (frequent user feedback will shape the
development differently than feedback only at specific milestones)

Software Engineering Methodologies: Managing the Development Process 6 / 29



Who Decides on the Methodology to Follow?

▶ The decision on the methodology usually depends on the context in which software is
developed:

▶ Large(r) organisations are likely to already have a methodology that all team members need to adopt

▶ Small(er) teams are usually flexible in deciding on an appropriate methodology

▶ There is no one-size-fits-all methodology — how to manage the development process may
depend on several factors, such as:

▶ the size of the team developing the software (larger teams may need more fine-grained
management than smaller teams)

▶ the associated software risks and costs (robots interacting with people pose different risks than
extraterrestrial exploration robots)

▶ the availability of users during the development process (frequent user feedback will shape the
development differently than feedback only at specific milestones)

Software Engineering Methodologies: Managing the Development Process 6 / 29



Who Decides on the Methodology to Follow?

▶ The decision on the methodology usually depends on the context in which software is
developed:

▶ Large(r) organisations are likely to already have a methodology that all team members need to adopt

▶ Small(er) teams are usually flexible in deciding on an appropriate methodology

▶ There is no one-size-fits-all methodology — how to manage the development process may
depend on several factors, such as:

▶ the size of the team developing the software (larger teams may need more fine-grained
management than smaller teams)

▶ the associated software risks and costs (robots interacting with people pose different risks than
extraterrestrial exploration robots)

▶ the availability of users during the development process (frequent user feedback will shape the
development differently than feedback only at specific milestones)

Software Engineering Methodologies: Managing the Development Process 6 / 29



Who Decides on the Methodology to Follow?

▶ The decision on the methodology usually depends on the context in which software is
developed:

▶ Large(r) organisations are likely to already have a methodology that all team members need to adopt

▶ Small(er) teams are usually flexible in deciding on an appropriate methodology

▶ There is no one-size-fits-all methodology — how to manage the development process may
depend on several factors, such as:

▶ the size of the team developing the software (larger teams may need more fine-grained
management than smaller teams)

▶ the associated software risks and costs (robots interacting with people pose different risks than
extraterrestrial exploration robots)

▶ the availability of users during the development process (frequent user feedback will shape the
development differently than feedback only at specific milestones)

Software Engineering Methodologies: Managing the Development Process 6 / 29



Software Engineering Methodologies

Software Engineering Methodologies: Managing the Development Process 7 / 29



Methodologies Overview

...

Software engineering
methodologies

...

Waterfall
model

...

Reuse-driven
development

...

Incremental
development

Software Engineering Methodologies: Managing the Development Process 8 / 29



Methodologies Overview

...

Software engineering
methodologies

...

Waterfall
model

...

Reuse-driven
development

...

Incremental
development

Software Engineering Methodologies: Managing the Development Process 8 / 29



Methodologies Overview

...

Software engineering
methodologies

...

Waterfall
model

...

Reuse-driven
development

...

Incremental
development

Software Engineering Methodologies: Managing the Development Process 8 / 29



Methodologies Overview

...

Software engineering
methodologies

...

Waterfall
model

...

Reuse-driven
development

...

Incremental
development

Software Engineering Methodologies: Managing the Development Process 8 / 29



Waterfall Model

▶ The waterfall model is a mostly sequential engineering
methodology — the development proceeds to the
next step only when the current step is completed

▶ But later stages may notice issues with the previous
steps, which then requires going a step back and
reworking certain aspects

▶ The completion of each stage is followed by producing
documentation that is approved before the next stage of
the process can start

▶ Corrections in previous steps require changes in the
documentation as well

▶ The waterfall model is a plan-driven process

Software Engineering Methodologies: Managing the Development Process 9 / 29



Waterfall Model

▶ The waterfall model is a mostly sequential engineering
methodology — the development proceeds to the
next step only when the current step is completed

▶ But later stages may notice issues with the previous
steps, which then requires going a step back and
reworking certain aspects

▶ The completion of each stage is followed by producing
documentation that is approved before the next stage of
the process can start

▶ Corrections in previous steps require changes in the
documentation as well

▶ The waterfall model is a plan-driven process

Software Engineering Methodologies: Managing the Development Process 9 / 29



Waterfall Model

▶ The waterfall model is a mostly sequential engineering
methodology — the development proceeds to the
next step only when the current step is completed

▶ But later stages may notice issues with the previous
steps, which then requires going a step back and
reworking certain aspects

▶ The completion of each stage is followed by producing
documentation that is approved before the next stage of
the process can start

▶ Corrections in previous steps require changes in the
documentation as well

▶ The waterfall model is a plan-driven process

Software Engineering Methodologies: Managing the Development Process 9 / 29



Reuse-Oriented Development

▶ In reuse-oriented development, software is designed and developed so that existing
components can be reused

▶ An important part of the engineering process using this methodology is thus the identification of
suitable existing components and the update of the initial requirements to fit the
constraints of the existing components

▶ Such components are then integrated with custom software that needs to be developed

▶ Robotics software development almost always involves elements of reuse-oriented
development — as we saw in the last lecture, there are many standard components that are used
in robot software

Software Engineering Methodologies: Managing the Development Process 10 / 29



Reuse-Oriented Development

▶ In reuse-oriented development, software is designed and developed so that existing
components can be reused

▶ An important part of the engineering process using this methodology is thus the identification of
suitable existing components and the update of the initial requirements to fit the
constraints of the existing components

▶ Such components are then integrated with custom software that needs to be developed

▶ Robotics software development almost always involves elements of reuse-oriented
development — as we saw in the last lecture, there are many standard components that are used
in robot software

Software Engineering Methodologies: Managing the Development Process 10 / 29



Reuse-Oriented Development

▶ In reuse-oriented development, software is designed and developed so that existing
components can be reused

▶ An important part of the engineering process using this methodology is thus the identification of
suitable existing components and the update of the initial requirements to fit the
constraints of the existing components

▶ Such components are then integrated with custom software that needs to be developed

▶ Robotics software development almost always involves elements of reuse-oriented
development — as we saw in the last lecture, there are many standard components that are used
in robot software

Software Engineering Methodologies: Managing the Development Process 10 / 29



Reuse-Oriented Development

▶ In reuse-oriented development, software is designed and developed so that existing
components can be reused

▶ An important part of the engineering process using this methodology is thus the identification of
suitable existing components and the update of the initial requirements to fit the
constraints of the existing components

▶ Such components are then integrated with custom software that needs to be developed

▶ Robotics software development almost always involves elements of reuse-oriented
development — as we saw in the last lecture, there are many standard components that are used
in robot software

Software Engineering Methodologies: Managing the Development Process 10 / 29



Incremental Development Model

▶ Incremental development is a process that interleaves
different stages of the design and development
process — a strict sequential structure is not followed

▶ An essential element of incremental development is that
prototypes are developed early and are then
iteratively improved based on frequent user feedback

▶ Unlike in the waterfall model, incremental development
focuses more on the development and deployment
and less on documenting the process

Software Engineering Methodologies: Managing the Development Process 11 / 29



Incremental Development Model

▶ Incremental development is a process that interleaves
different stages of the design and development
process — a strict sequential structure is not followed

▶ An essential element of incremental development is that
prototypes are developed early and are then
iteratively improved based on frequent user feedback

▶ Unlike in the waterfall model, incremental development
focuses more on the development and deployment
and less on documenting the process

Software Engineering Methodologies: Managing the Development Process 11 / 29



Incremental Development Model

▶ Incremental development is a process that interleaves
different stages of the design and development
process — a strict sequential structure is not followed

▶ An essential element of incremental development is that
prototypes are developed early and are then
iteratively improved based on frequent user feedback

▶ Unlike in the waterfall model, incremental development
focuses more on the development and deployment
and less on documenting the process

Software Engineering Methodologies: Managing the Development Process 11 / 29



Requirements Engineering

▶ Regardless of the concrete methodologies that is
followed, it is necessary to identify the requirements of
the users of a robot system (or even just a small
component)

▶ This is achieved with a requirements engineering process,
during which the needs and expectations of the
system are collected and analysed

▶ During the process, it is essential to ensure that the
requirements are correctly understood, but also to
verify that their realisation is feasible

▶ The requirements engineering process usually ends with
documentation that clearly specifies the requirements —
a requirement specification

Software Engineering Methodologies: Managing the Development Process 12 / 29



Requirements Engineering

▶ Regardless of the concrete methodologies that is
followed, it is necessary to identify the requirements of
the users of a robot system (or even just a small
component)

▶ This is achieved with a requirements engineering process,
during which the needs and expectations of the
system are collected and analysed

▶ During the process, it is essential to ensure that the
requirements are correctly understood, but also to
verify that their realisation is feasible

▶ The requirements engineering process usually ends with
documentation that clearly specifies the requirements —
a requirement specification

Software Engineering Methodologies: Managing the Development Process 12 / 29



Requirements Engineering

▶ Regardless of the concrete methodologies that is
followed, it is necessary to identify the requirements of
the users of a robot system (or even just a small
component)

▶ This is achieved with a requirements engineering process,
during which the needs and expectations of the
system are collected and analysed

▶ During the process, it is essential to ensure that the
requirements are correctly understood, but also to
verify that their realisation is feasible

▶ The requirements engineering process usually ends with
documentation that clearly specifies the requirements —
a requirement specification

Software Engineering Methodologies: Managing the Development Process 12 / 29



Requirements Engineering

▶ Regardless of the concrete methodologies that is
followed, it is necessary to identify the requirements of
the users of a robot system (or even just a small
component)

▶ This is achieved with a requirements engineering process,
during which the needs and expectations of the
system are collected and analysed

▶ During the process, it is essential to ensure that the
requirements are correctly understood, but also to
verify that their realisation is feasible

▶ The requirements engineering process usually ends with
documentation that clearly specifies the requirements —
a requirement specification

Software Engineering Methodologies: Managing the Development Process 12 / 29



Software System Design

▶ The requirements engineering process is followed by a
system design process

▶ During this process, the operational, system, and
technical architectures are designed

▶ As discussed in our session on robot software
architectures, the operational architecture is typically
based on standard models

▶ The design step may end with an architecture design
document (in the waterfall or reuse-oriented models) or
an initial system prototype (in incremental development)

Software Engineering Methodologies: Managing the Development Process 13 / 29



Software System Design

▶ The requirements engineering process is followed by a
system design process

▶ During this process, the operational, system, and
technical architectures are designed

▶ As discussed in our session on robot software
architectures, the operational architecture is typically
based on standard models

▶ The design step may end with an architecture design
document (in the waterfall or reuse-oriented models) or
an initial system prototype (in incremental development)

Software Engineering Methodologies: Managing the Development Process 13 / 29



Software System Design

▶ The requirements engineering process is followed by a
system design process

▶ During this process, the operational, system, and
technical architectures are designed

▶ As discussed in our session on robot software
architectures, the operational architecture is typically
based on standard models

▶ The design step may end with an architecture design
document (in the waterfall or reuse-oriented models) or
an initial system prototype (in incremental development)

Software Engineering Methodologies: Managing the Development Process 13 / 29



Risk Management: Boehm’s Spiral Model

▶ The software engineering process is always
associated with risks, particularly due to changing
requirements, but also due to internal project risks

▶ Boehm’s spiral model is particularly developed for
risk management — risks are re-evaluted at every
stage of the design and development process

▶ According to this model, the evaluation of risks
directly informs the subsequent development

▶ The individual development cycles can be based on
any of the three development methodologies that
we discussed before

Software Engineering Methodologies: Managing the Development Process 14 / 29



Risk Management: Boehm’s Spiral Model

▶ The software engineering process is always
associated with risks, particularly due to changing
requirements, but also due to internal project risks

▶ Boehm’s spiral model is particularly developed for
risk management — risks are re-evaluted at every
stage of the design and development process

▶ According to this model, the evaluation of risks
directly informs the subsequent development

▶ The individual development cycles can be based on
any of the three development methodologies that
we discussed before

Software Engineering Methodologies: Managing the Development Process 14 / 29



Risk Management: Boehm’s Spiral Model

▶ The software engineering process is always
associated with risks, particularly due to changing
requirements, but also due to internal project risks

▶ Boehm’s spiral model is particularly developed for
risk management — risks are re-evaluted at every
stage of the design and development process

▶ According to this model, the evaluation of risks
directly informs the subsequent development

▶ The individual development cycles can be based on
any of the three development methodologies that
we discussed before

Software Engineering Methodologies: Managing the Development Process 14 / 29



Software Testing Stages

▶ The software engineering process needs to be accompanied by software testing
▶ In robotics, we have the additional challenge that testing needs to involve the hardware platform for

which the software is developed

▶ Software tests can be done at different levels — we have component (unit), integration, and
system tests (as briefly discussed in our introductory lecture)

▶ The testing process should also involve the users of a robot, such that there are two types of
tests that are performed with users:

▶ Alpha (aka acceptance) testing, where the system is evaluated with respect to the requirements

▶ Beta testing, where a larger base of potential users interacts with the system (typically for a
prolonged period) and can report issues to the developers

Software Engineering Methodologies: Managing the Development Process 15 / 29



Software Testing Stages

▶ The software engineering process needs to be accompanied by software testing
▶ In robotics, we have the additional challenge that testing needs to involve the hardware platform for

which the software is developed

▶ Software tests can be done at different levels — we have component (unit), integration, and
system tests (as briefly discussed in our introductory lecture)

▶ The testing process should also involve the users of a robot, such that there are two types of
tests that are performed with users:

▶ Alpha (aka acceptance) testing, where the system is evaluated with respect to the requirements

▶ Beta testing, where a larger base of potential users interacts with the system (typically for a
prolonged period) and can report issues to the developers

Software Engineering Methodologies: Managing the Development Process 15 / 29



Software Testing Stages

▶ The software engineering process needs to be accompanied by software testing
▶ In robotics, we have the additional challenge that testing needs to involve the hardware platform for

which the software is developed

▶ Software tests can be done at different levels — we have component (unit), integration, and
system tests (as briefly discussed in our introductory lecture)

▶ The testing process should also involve the users of a robot, such that there are two types of
tests that are performed with users:

▶ Alpha (aka acceptance) testing, where the system is evaluated with respect to the requirements

▶ Beta testing, where a larger base of potential users interacts with the system (typically for a
prolonged period) and can report issues to the developers

Software Engineering Methodologies: Managing the Development Process 15 / 29



Software Testing Stages

▶ The software engineering process needs to be accompanied by software testing
▶ In robotics, we have the additional challenge that testing needs to involve the hardware platform for

which the software is developed

▶ Software tests can be done at different levels — we have component (unit), integration, and
system tests (as briefly discussed in our introductory lecture)

▶ The testing process should also involve the users of a robot, such that there are two types of
tests that are performed with users:

▶ Alpha (aka acceptance) testing, where the system is evaluated with respect to the requirements

▶ Beta testing, where a larger base of potential users interacts with the system (typically for a
prolonged period) and can report issues to the developers

Software Engineering Methodologies: Managing the Development Process 15 / 29



Software Testing Stages

▶ The software engineering process needs to be accompanied by software testing
▶ In robotics, we have the additional challenge that testing needs to involve the hardware platform for

which the software is developed

▶ Software tests can be done at different levels — we have component (unit), integration, and
system tests (as briefly discussed in our introductory lecture)

▶ The testing process should also involve the users of a robot, such that there are two types of
tests that are performed with users:

▶ Alpha (aka acceptance) testing, where the system is evaluated with respect to the requirements

▶ Beta testing, where a larger base of potential users interacts with the system (typically for a
prolonged period) and can report issues to the developers

Software Engineering Methodologies: Managing the Development Process 15 / 29



Agile Development

Software Engineering Methodologies: Managing the Development Process 16 / 29



Agile Development Motivation

▶ Agile development is a rapid development paradigm that focuses on fast development and
continuous integration of changes

▶ The paradigm is an instantiation of the incremental development process that we discussed before

▶ The primary motivation for agile development is change management

▶ Changes are naturally integrated into the development process since software is developed
incrementally, with constant user involvement to guide the development process

▶ Agile development is a collection of methods rather than a monolithic structure of conventions
and practices

Software Engineering Methodologies: Managing the Development Process 17 / 29



Agile Development Motivation

▶ Agile development is a rapid development paradigm that focuses on fast development and
continuous integration of changes

▶ The paradigm is an instantiation of the incremental development process that we discussed before

▶ The primary motivation for agile development is change management

▶ Changes are naturally integrated into the development process since software is developed
incrementally, with constant user involvement to guide the development process

▶ Agile development is a collection of methods rather than a monolithic structure of conventions
and practices

Software Engineering Methodologies: Managing the Development Process 17 / 29



Agile Development Motivation

▶ Agile development is a rapid development paradigm that focuses on fast development and
continuous integration of changes

▶ The paradigm is an instantiation of the incremental development process that we discussed before

▶ The primary motivation for agile development is change management

▶ Changes are naturally integrated into the development process since software is developed
incrementally, with constant user involvement to guide the development process

▶ Agile development is a collection of methods rather than a monolithic structure of conventions
and practices

Software Engineering Methodologies: Managing the Development Process 17 / 29



The Agile Manifesto1

“We are uncovering better ways of developing software by doing it and helping others do it. Through
this work we have come to value:

▶ Individuals and interactions over processes and tools

▶ Working software over comprehensive documentation

▶ Customer collaboration over contract negotiation

▶ Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.”

1https://agilemanifesto.org

Software Engineering Methodologies: Managing the Development Process 18 / 29



Extreme Programming (XP)

▶ XP is one particular agile development method

▶ The name “extreme” refers to the fact that best
practices for development are pushed to the extreme

▶ In this paradigm, requirements are represented as user
stories from which concrete tasks are derived

▶ Stories are developed on so-called story cards

▶ Version releases in extreme programming are done at
frequent rates, such that users are directly involved in
the development process (to define development
priorities and acceptance tests)

▶ Extreme programming performs continuous automated
testing (new versions are accepted only if tests pass) and
regular refactoring (to handle the complexity of rapidly
changing software)

Software Engineering Methodologies: Managing the Development Process 19 / 29



Extreme Programming (XP)

▶ XP is one particular agile development method

▶ The name “extreme” refers to the fact that best
practices for development are pushed to the extreme

▶ In this paradigm, requirements are represented as user
stories from which concrete tasks are derived

▶ Stories are developed on so-called story cards

▶ Version releases in extreme programming are done at
frequent rates, such that users are directly involved in
the development process (to define development
priorities and acceptance tests)

▶ Extreme programming performs continuous automated
testing (new versions are accepted only if tests pass) and
regular refactoring (to handle the complexity of rapidly
changing software)

Software Engineering Methodologies: Managing the Development Process 19 / 29



Extreme Programming (XP)

▶ XP is one particular agile development method

▶ The name “extreme” refers to the fact that best
practices for development are pushed to the extreme

▶ In this paradigm, requirements are represented as user
stories from which concrete tasks are derived

▶ Stories are developed on so-called story cards

▶ Version releases in extreme programming are done at
frequent rates, such that users are directly involved in
the development process (to define development
priorities and acceptance tests)

▶ Extreme programming performs continuous automated
testing (new versions are accepted only if tests pass) and
regular refactoring (to handle the complexity of rapidly
changing software)

Software Engineering Methodologies: Managing the Development Process 19 / 29



Extreme Programming (XP)

▶ XP is one particular agile development method

▶ The name “extreme” refers to the fact that best
practices for development are pushed to the extreme

▶ In this paradigm, requirements are represented as user
stories from which concrete tasks are derived

▶ Stories are developed on so-called story cards

▶ Version releases in extreme programming are done at
frequent rates, such that users are directly involved in
the development process (to define development
priorities and acceptance tests)

▶ Extreme programming performs continuous automated
testing (new versions are accepted only if tests pass) and
regular refactoring (to handle the complexity of rapidly
changing software)

Software Engineering Methodologies: Managing the Development Process 19 / 29



Extreme Programming Practices

Software Engineering Methodologies: Managing the Development Process 20 / 29



Pair Programming

▶ One of the main principles of extreme programming is a practice called pair programming, which
involves a pair of programmers jointly working on the same component — including sitting and
programming together

▶ Pair programming has various benefits compared to individual development:

▶ The code is written and looked at by two people — likelier to discover bugs early

▶ There is shared knowledge of the code — makes the development team more resistant to people
leaving the team

▶ Enables experience sharing — if more experienced developers are paired with less experienced ones

▶ Pair programming may, however, be less useful for senior developers or even negatively affect their
productivity

Software Engineering Methodologies: Managing the Development Process 21 / 29



Pair Programming

▶ One of the main principles of extreme programming is a practice called pair programming, which
involves a pair of programmers jointly working on the same component — including sitting and
programming together

▶ Pair programming has various benefits compared to individual development:

▶ The code is written and looked at by two people — likelier to discover bugs early

▶ There is shared knowledge of the code — makes the development team more resistant to people
leaving the team

▶ Enables experience sharing — if more experienced developers are paired with less experienced ones

▶ Pair programming may, however, be less useful for senior developers or even negatively affect their
productivity

Software Engineering Methodologies: Managing the Development Process 21 / 29



Pair Programming

▶ One of the main principles of extreme programming is a practice called pair programming, which
involves a pair of programmers jointly working on the same component — including sitting and
programming together

▶ Pair programming has various benefits compared to individual development:

▶ The code is written and looked at by two people — likelier to discover bugs early

▶ There is shared knowledge of the code — makes the development team more resistant to people
leaving the team

▶ Enables experience sharing — if more experienced developers are paired with less experienced ones

▶ Pair programming may, however, be less useful for senior developers or even negatively affect their
productivity

Software Engineering Methodologies: Managing the Development Process 21 / 29



Scrum

▶ Scrum is an agile development management
methodology and can be used in conjunction with other
agile methods (such as extreme programming)

▶ The idea behind scrum is to organise the complete
development process into iterative cycles called sprints

▶ While a sprint is ongoing, short daily stand-up meetings
are conducted with all team members

▶ The meetings are guided by a scrum master, who keeps
track of the development progress and communicates
this with users and outside managers

▶ We use scrum frequently in the b-it-bots team,
particularly before and during competitions

Software Engineering Methodologies: Managing the Development Process 22 / 29



Scrum

▶ Scrum is an agile development management
methodology and can be used in conjunction with other
agile methods (such as extreme programming)

▶ The idea behind scrum is to organise the complete
development process into iterative cycles called sprints

▶ While a sprint is ongoing, short daily stand-up meetings
are conducted with all team members

▶ The meetings are guided by a scrum master, who keeps
track of the development progress and communicates
this with users and outside managers

▶ We use scrum frequently in the b-it-bots team,
particularly before and during competitions

Software Engineering Methodologies: Managing the Development Process 22 / 29



Scrum

▶ Scrum is an agile development management
methodology and can be used in conjunction with other
agile methods (such as extreme programming)

▶ The idea behind scrum is to organise the complete
development process into iterative cycles called sprints

▶ While a sprint is ongoing, short daily stand-up meetings
are conducted with all team members

▶ The meetings are guided by a scrum master, who keeps
track of the development progress and communicates
this with users and outside managers

▶ We use scrum frequently in the b-it-bots team,
particularly before and during competitions

Software Engineering Methodologies: Managing the Development Process 22 / 29



Scrum

▶ Scrum is an agile development management
methodology and can be used in conjunction with other
agile methods (such as extreme programming)

▶ The idea behind scrum is to organise the complete
development process into iterative cycles called sprints

▶ While a sprint is ongoing, short daily stand-up meetings
are conducted with all team members

▶ The meetings are guided by a scrum master, who keeps
track of the development progress and communicates
this with users and outside managers

▶ We use scrum frequently in the b-it-bots team,
particularly before and during competitions

Software Engineering Methodologies: Managing the Development Process 22 / 29



Scrum Sprints

▶ Scrum sprints are short development cycles that typically last only a few weeks

▶ Each sprint starts with an evaluation of the tasks (called product backlog in scrum), namely their
priorities and associated risks

▶ Users are typically involved in this stage

▶ The product backlog is typically tracked using issues, which are well-defined tasks that are
assigned to a person

▶ Issues can have multiple statuses, such as open, in-progress and completed

▶ The scrum master, who leads the stand-up meetings during a sprint, is a member of the team or
works closely with the team

▶ A scrum master is not an explicit team manager, but needs to have enough expertise to oversee the
sprint and resolve challenges during the implementation

Software Engineering Methodologies: Managing the Development Process 23 / 29



Scrum Sprints

▶ Scrum sprints are short development cycles that typically last only a few weeks

▶ Each sprint starts with an evaluation of the tasks (called product backlog in scrum), namely their
priorities and associated risks

▶ Users are typically involved in this stage

▶ The product backlog is typically tracked using issues, which are well-defined tasks that are
assigned to a person

▶ Issues can have multiple statuses, such as open, in-progress and completed

▶ The scrum master, who leads the stand-up meetings during a sprint, is a member of the team or
works closely with the team

▶ A scrum master is not an explicit team manager, but needs to have enough expertise to oversee the
sprint and resolve challenges during the implementation

Software Engineering Methodologies: Managing the Development Process 23 / 29



Scrum Sprints

▶ Scrum sprints are short development cycles that typically last only a few weeks

▶ Each sprint starts with an evaluation of the tasks (called product backlog in scrum), namely their
priorities and associated risks

▶ Users are typically involved in this stage

▶ The product backlog is typically tracked using issues, which are well-defined tasks that are
assigned to a person

▶ Issues can have multiple statuses, such as open, in-progress and completed

▶ The scrum master, who leads the stand-up meetings during a sprint, is a member of the team or
works closely with the team

▶ A scrum master is not an explicit team manager, but needs to have enough expertise to oversee the
sprint and resolve challenges during the implementation

Software Engineering Methodologies: Managing the Development Process 23 / 29



Scrum Sprints

▶ Scrum sprints are short development cycles that typically last only a few weeks

▶ Each sprint starts with an evaluation of the tasks (called product backlog in scrum), namely their
priorities and associated risks

▶ Users are typically involved in this stage

▶ The product backlog is typically tracked using issues, which are well-defined tasks that are
assigned to a person

▶ Issues can have multiple statuses, such as open, in-progress and completed

▶ The scrum master, who leads the stand-up meetings during a sprint, is a member of the team or
works closely with the team

▶ A scrum master is not an explicit team manager, but needs to have enough expertise to oversee the
sprint and resolve challenges during the implementation

Software Engineering Methodologies: Managing the Development Process 23 / 29



Paradigm Challenges and Implications for Robotics

Software Engineering Methodologies: Managing the Development Process 24 / 29



Challenges With Plan-Driven Development

Plan-driven methods follow strict and often rigid
procedures; this reduces the ability to adapt to
requirement changes

The focus on extensive documentation can slow
down the development progress and can be
counterproductive for smaller teams

...

Careful and extensive management is usually
needed for executing plan-driven methods, which
can affect the flexibility of the development team

Software Engineering Methodologies: Managing the Development Process 25 / 29



Challenges With Plan-Driven Development

Plan-driven methods follow strict and often rigid
procedures; this reduces the ability to adapt to
requirement changes

The focus on extensive documentation can slow
down the development progress and can be
counterproductive for smaller teams

...

Careful and extensive management is usually
needed for executing plan-driven methods, which
can affect the flexibility of the development team

Software Engineering Methodologies: Managing the Development Process 25 / 29



Challenges With Plan-Driven Development

Plan-driven methods follow strict and often rigid
procedures; this reduces the ability to adapt to
requirement changes

The focus on extensive documentation can slow
down the development progress and can be
counterproductive for smaller teams

...

Careful and extensive management is usually
needed for executing plan-driven methods, which
can affect the flexibility of the development team

Software Engineering Methodologies: Managing the Development Process 25 / 29



Challenges With Reuse-Oriented Development

The reuse of existing components may make it
difficult or impossible to satisfy certain
requirements

If proprietary components are reused, there is no
way to make relevant adaptations to the
components

...

Existing components may impose development
restrictions that lead to suboptimal software

Software Engineering Methodologies: Managing the Development Process 26 / 29



Challenges With Reuse-Oriented Development

The reuse of existing components may make it
difficult or impossible to satisfy certain
requirements

If proprietary components are reused, there is no
way to make relevant adaptations to the
components

...

Existing components may impose development
restrictions that lead to suboptimal software

Software Engineering Methodologies: Managing the Development Process 26 / 29



Challenges With Reuse-Oriented Development

The reuse of existing components may make it
difficult or impossible to satisfy certain
requirements

If proprietary components are reused, there is no
way to make relevant adaptations to the
components

...

Existing components may impose development
restrictions that lead to suboptimal software

Software Engineering Methodologies: Managing the Development Process 26 / 29



Challenges With Incremental Development

Careful planning is often essential for complex,
safety-critical, and expensive systems; this
sometimes collides with the principles of
incremental methods

Incremental development can go against
established practices in larger teams and may not
work within some contexts as a result

Due to their rapid development and deployment
nature, incremental techniques, such as scrum,
require a fully dedicated team that can handle
the pressure of the process

Daily stand-up meetings may be
counterproductive in certain cases — some tasks
require longer effort, and daily meetings distract
rather than help

Software Engineering Methodologies: Managing the Development Process 27 / 29



Challenges With Incremental Development

Careful planning is often essential for complex,
safety-critical, and expensive systems; this
sometimes collides with the principles of
incremental methods

Incremental development can go against
established practices in larger teams and may not
work within some contexts as a result

Due to their rapid development and deployment
nature, incremental techniques, such as scrum,
require a fully dedicated team that can handle
the pressure of the process

Daily stand-up meetings may be
counterproductive in certain cases — some tasks
require longer effort, and daily meetings distract
rather than help

Software Engineering Methodologies: Managing the Development Process 27 / 29



Challenges With Incremental Development

Careful planning is often essential for complex,
safety-critical, and expensive systems; this
sometimes collides with the principles of
incremental methods

Incremental development can go against
established practices in larger teams and may not
work within some contexts as a result

Due to their rapid development and deployment
nature, incremental techniques, such as scrum,
require a fully dedicated team that can handle
the pressure of the process

Daily stand-up meetings may be
counterproductive in certain cases — some tasks
require longer effort, and daily meetings distract
rather than help

Software Engineering Methodologies: Managing the Development Process 27 / 29



Challenges With Incremental Development

Careful planning is often essential for complex,
safety-critical, and expensive systems; this
sometimes collides with the principles of
incremental methods

Incremental development can go against
established practices in larger teams and may not
work within some contexts as a result

Due to their rapid development and deployment
nature, incremental techniques, such as scrum,
require a fully dedicated team that can handle
the pressure of the process

Daily stand-up meetings may be
counterproductive in certain cases — some tasks
require longer effort, and daily meetings distract
rather than help

Software Engineering Methodologies: Managing the Development Process 27 / 29



Implications for Robotics

▶ In robotics, there is often a discrepancy between user expectations and the reality of robots

▶ The best way to verify the acceptance of a robot is to regularly interact with potential users —
incremental development methods are particularly suitable for this

▶ It does not help to carefully plan the development of a robot that, in the end, will not be used by
anyone

▶ Significant development in robotics is done through collaborative (research) projects; in the
context of such projects, plan-driven development is typically the method of choice for overall
project management

▶ Careful planning is required for project proposals, such that the success of projects is measured not
only by the results, but also by how well the progress corresponds to the promised plan

▶ The expectation to produce detailed deliverables is also a common feature of such projects

▶ Elements of iterative methods are, however, often adopted throughout the development

▶ Incremental development is essential in the context of robotics competitions — competition
rules change frequently, so teams need to be able to adapt to those changes quickly

Software Engineering Methodologies: Managing the Development Process 28 / 29



Implications for Robotics

▶ In robotics, there is often a discrepancy between user expectations and the reality of robots

▶ The best way to verify the acceptance of a robot is to regularly interact with potential users —
incremental development methods are particularly suitable for this

▶ It does not help to carefully plan the development of a robot that, in the end, will not be used by
anyone

▶ Significant development in robotics is done through collaborative (research) projects; in the
context of such projects, plan-driven development is typically the method of choice for overall
project management

▶ Careful planning is required for project proposals, such that the success of projects is measured not
only by the results, but also by how well the progress corresponds to the promised plan

▶ The expectation to produce detailed deliverables is also a common feature of such projects

▶ Elements of iterative methods are, however, often adopted throughout the development

▶ Incremental development is essential in the context of robotics competitions — competition
rules change frequently, so teams need to be able to adapt to those changes quickly

Software Engineering Methodologies: Managing the Development Process 28 / 29



Implications for Robotics

▶ In robotics, there is often a discrepancy between user expectations and the reality of robots

▶ The best way to verify the acceptance of a robot is to regularly interact with potential users —
incremental development methods are particularly suitable for this

▶ It does not help to carefully plan the development of a robot that, in the end, will not be used by
anyone

▶ Significant development in robotics is done through collaborative (research) projects; in the
context of such projects, plan-driven development is typically the method of choice for overall
project management

▶ Careful planning is required for project proposals, such that the success of projects is measured not
only by the results, but also by how well the progress corresponds to the promised plan

▶ The expectation to produce detailed deliverables is also a common feature of such projects

▶ Elements of iterative methods are, however, often adopted throughout the development

▶ Incremental development is essential in the context of robotics competitions — competition
rules change frequently, so teams need to be able to adapt to those changes quickly

Software Engineering Methodologies: Managing the Development Process 28 / 29



Summary

▶ A software engineering methodology defines procedures for managing the complete workflow of a
software project

▶ There are different types of software methodologies, which can be generally observed as plan-driven
or incremental

▶ Reuse-oriented development is a methodology that is explicitly concerned with identifying and
integrating existing components into the developed software

▶ Agile development methods, such as extreme programming and scrum, are popular examples of
incremental development that emphasise change management and user involvement in the
development process

▶ All of the methodologies have their own pros and cons with respect to robot software development;
there is no one-size-fits-all methodology that works equally well for all cases

Software Engineering Methodologies: Managing the Development Process 29 / 29


