
Simulation-Based Robot Software
Development

Dr. Alex Mitrevski
Master of Autonomous Systems



Structure

▶ Motivation for using simulations

▶ Physics engines

▶ Unified Robot Description Format (URDF)

Simulation-Based Robot Software Development 2 / 24



Motivation for Using Simulations

Simulation-Based Robot Software Development 3 / 24



What is a Robot Simulator?

Our HSR robot performing a simulated clean up task

▶ A simulator in general is a virtual environment in which
dynamic physical processes can be modelled

▶ A robot simulator is one that simulates robotic systems and
robot interaction scenarios

▶ Simulators are always associated with a programming API
that makes it possible to create custom simulated worlds

Simulation-Based Robot Software Development 4 / 24



What is a Robot Simulator?

Our HSR robot performing a simulated clean up task

▶ A simulator in general is a virtual environment in which
dynamic physical processes can be modelled

▶ A robot simulator is one that simulates robotic systems and
robot interaction scenarios

▶ Simulators are always associated with a programming API
that makes it possible to create custom simulated worlds

Simulation-Based Robot Software Development 4 / 24



What is a Robot Simulator?

Our HSR robot performing a simulated clean up task

▶ A simulator in general is a virtual environment in which
dynamic physical processes can be modelled

▶ A robot simulator is one that simulates robotic systems and
robot interaction scenarios

▶ Simulators are always associated with a programming API
that makes it possible to create custom simulated worlds

Simulation-Based Robot Software Development 4 / 24



Simulator Uses in Robotics

▶ There are two main uses of simulators in robotics:

▶ To create simulation-based testbeds for verifying the operation of robot prototypes

▶ To collect data for machine learning

▶ Simulators are also sometimes used for robotics competitions so that different algorithmic
approaches for solving a given problem can be compared under standardised conditions

Simulation-Based Robot Software Development 5 / 24



Simulator Uses in Robotics

▶ There are two main uses of simulators in robotics:

▶ To create simulation-based testbeds for verifying the operation of robot prototypes

▶ To collect data for machine learning

▶ Simulators are also sometimes used for robotics competitions so that different algorithmic
approaches for solving a given problem can be compared under standardised conditions

Simulation-Based Robot Software Development 5 / 24



Simulations as Robot Testbeds

Simulations are primarily a testbed for robot algorithms — for a variety of reasons

Rapid prototype testing

The feasibility of developed robot algorithms can
be tested before conducting a real-robot test

Safe testing

Simulations enable performing algorithmic tests
without the danger of damaging a robot

Diverse testing

Tests in simulations can be set up so that a
robot is tested in a larger variety of scenarios
than would be possible with physical testing

Continuous testing

Simulations can be integrated into continuous
integration workflows so that program changes
are automatically verified

Simulation-Based Robot Software Development 6 / 24



Simulations as Robot Testbeds

Simulations are primarily a testbed for robot algorithms — for a variety of reasons

Rapid prototype testing

The feasibility of developed robot algorithms can
be tested before conducting a real-robot test

Safe testing

Simulations enable performing algorithmic tests
without the danger of damaging a robot

Diverse testing

Tests in simulations can be set up so that a
robot is tested in a larger variety of scenarios
than would be possible with physical testing

Continuous testing

Simulations can be integrated into continuous
integration workflows so that program changes
are automatically verified

Simulation-Based Robot Software Development 6 / 24



Simulations as Robot Testbeds

Simulations are primarily a testbed for robot algorithms — for a variety of reasons

Rapid prototype testing

The feasibility of developed robot algorithms can
be tested before conducting a real-robot test

Safe testing

Simulations enable performing algorithmic tests
without the danger of damaging a robot

Diverse testing

Tests in simulations can be set up so that a
robot is tested in a larger variety of scenarios
than would be possible with physical testing

Continuous testing

Simulations can be integrated into continuous
integration workflows so that program changes
are automatically verified

Simulation-Based Robot Software Development 6 / 24



Simulations as Robot Testbeds

Simulations are primarily a testbed for robot algorithms — for a variety of reasons

Rapid prototype testing

The feasibility of developed robot algorithms can
be tested before conducting a real-robot test

Safe testing

Simulations enable performing algorithmic tests
without the danger of damaging a robot

Diverse testing

Tests in simulations can be set up so that a
robot is tested in a larger variety of scenarios
than would be possible with physical testing

Continuous testing

Simulations can be integrated into continuous
integration workflows so that program changes
are automatically verified

Simulation-Based Robot Software Development 6 / 24



Simulations as Robot Testbeds

Simulations are primarily a testbed for robot algorithms — for a variety of reasons

Rapid prototype testing

The feasibility of developed robot algorithms can
be tested before conducting a real-robot test

Safe testing

Simulations enable performing algorithmic tests
without the danger of damaging a robot

Diverse testing

Tests in simulations can be set up so that a
robot is tested in a larger variety of scenarios
than would be possible with physical testing

Continuous testing

Simulations can be integrated into continuous
integration workflows so that program changes
are automatically verified

Simulation-Based Robot Software Development 6 / 24



Simulations for Robot Learning

Simulations are also frequently used during robot learning, also for multiple reasons

Simple data collection

Simulations are a relatively cheap source of
data compared to real-world data, which need a
careful setup and are time-consuming to collect

Diverse data collection
Due to the simplicity of making changes to
simulated worlds, datasets exposing a robot to
a variety of scenarios can be collected

Safe learning

Simulations enable a robot to try out
potentially dangerous actions, which are
inevitable for some learning algorithms

Simulation-Based Robot Software Development 7 / 24



Simulations for Robot Learning

Simulations are also frequently used during robot learning, also for multiple reasons

Simple data collection

Simulations are a relatively cheap source of
data compared to real-world data, which need a
careful setup and are time-consuming to collect

Diverse data collection
Due to the simplicity of making changes to
simulated worlds, datasets exposing a robot to
a variety of scenarios can be collected

Safe learning

Simulations enable a robot to try out
potentially dangerous actions, which are
inevitable for some learning algorithms

Simulation-Based Robot Software Development 7 / 24



Simulations for Robot Learning

Simulations are also frequently used during robot learning, also for multiple reasons

Simple data collection

Simulations are a relatively cheap source of
data compared to real-world data, which need a
careful setup and are time-consuming to collect

Diverse data collection
Due to the simplicity of making changes to
simulated worlds, datasets exposing a robot to
a variety of scenarios can be collected

Safe learning

Simulations enable a robot to try out
potentially dangerous actions, which are
inevitable for some learning algorithms

Simulation-Based Robot Software Development 7 / 24



Simulations for Robot Learning

Simulations are also frequently used during robot learning, also for multiple reasons

Simple data collection

Simulations are a relatively cheap source of
data compared to real-world data, which need a
careful setup and are time-consuming to collect

Diverse data collection
Due to the simplicity of making changes to
simulated worlds, datasets exposing a robot to
a variety of scenarios can be collected

Safe learning

Simulations enable a robot to try out
potentially dangerous actions, which are
inevitable for some learning algorithms

Simulation-Based Robot Software Development 7 / 24



Many Uses of Simulations in Robotics

J. Collins et al., “A Review of Physics Simulators for Robotic Applications,” in IEEE Access, vol. 9, pp. 51416–51431, 2021.

Simulation-Based Robot Software Development 8 / 24



Simulations are Good for Parallel Scenario Execution

Simulation-Based Robot Software Development 9 / 24



Common Robot Simulators

Gazebo PyBullet Webots

MuJoCo Simulators Chrono

CoppeliaSim CARLA NVIDIA Isaac

Simulation-Based Robot Software Development 10 / 24



Robot Simulators and Game Engines

Environment in the CARLA simulator (based on Unreal Engine):
https://carla.readthedocs.io/en/latest/map town03/

Environment in Gazebo

▶ Robot simulators are typically developed
independently of game engines and are specifically
tailored to fit the needs of robotics developers

▶ For instance, Gazebo has many robot models as well as
plugins for a variety of commonly used robot sensors

▶ Most robotics simulators also support standard robotics
development frameworks, such as ROS

▶ Some robot simulators are, however, based on game
engines, such as Unity or Unreal Engine

▶ Game engines can usually render more photorealistic
worlds, which is particularly important if a robot needs to
collect visual data in simulation

Simulation-Based Robot Software Development 11 / 24

https://carla.readthedocs.io/en/latest/map_town03/


Robot Simulators and Game Engines

Environment in the CARLA simulator (based on Unreal Engine):
https://carla.readthedocs.io/en/latest/map town03/

Environment in Gazebo

▶ Robot simulators are typically developed
independently of game engines and are specifically
tailored to fit the needs of robotics developers

▶ For instance, Gazebo has many robot models as well as
plugins for a variety of commonly used robot sensors

▶ Most robotics simulators also support standard robotics
development frameworks, such as ROS

▶ Some robot simulators are, however, based on game
engines, such as Unity or Unreal Engine

▶ Game engines can usually render more photorealistic
worlds, which is particularly important if a robot needs to
collect visual data in simulation

Simulation-Based Robot Software Development 11 / 24

https://carla.readthedocs.io/en/latest/map_town03/


Physics Engines

Simulation-Based Robot Software Development 12 / 24



What is a Physics Engine?

▶ In the background, simulators apply a model of physical laws — this model is provided by a
physics engine

▶ Most physical phenomena are governed by (ordinary or partial) differential equations — physics
engines thus need to perform numerical integration

▶ The algorithm that implements a solution to a numerical problem is referred to as a solver

▶ Physics engines are faced with a trade-off between accuracy and speed — accurate estimation
of physical phenomena requires more solver iterations, but this increases the time to reach a result

▶ Engines primarily differ in the solvers they implement and the way they set up the problem

▶ Most simulators support multiple physics engines

▶ The engine can be exchanged so that higher accuracy or higher efficiency is achieved, depending on
the use case

Simulation-Based Robot Software Development 13 / 24



What is a Physics Engine?

▶ In the background, simulators apply a model of physical laws — this model is provided by a
physics engine

▶ Most physical phenomena are governed by (ordinary or partial) differential equations — physics
engines thus need to perform numerical integration

▶ The algorithm that implements a solution to a numerical problem is referred to as a solver

▶ Physics engines are faced with a trade-off between accuracy and speed — accurate estimation
of physical phenomena requires more solver iterations, but this increases the time to reach a result

▶ Engines primarily differ in the solvers they implement and the way they set up the problem

▶ Most simulators support multiple physics engines

▶ The engine can be exchanged so that higher accuracy or higher efficiency is achieved, depending on
the use case

Simulation-Based Robot Software Development 13 / 24



What is a Physics Engine?

▶ In the background, simulators apply a model of physical laws — this model is provided by a
physics engine

▶ Most physical phenomena are governed by (ordinary or partial) differential equations — physics
engines thus need to perform numerical integration

▶ The algorithm that implements a solution to a numerical problem is referred to as a solver

▶ Physics engines are faced with a trade-off between accuracy and speed — accurate estimation
of physical phenomena requires more solver iterations, but this increases the time to reach a result

▶ Engines primarily differ in the solvers they implement and the way they set up the problem

▶ Most simulators support multiple physics engines

▶ The engine can be exchanged so that higher accuracy or higher efficiency is achieved, depending on
the use case

Simulation-Based Robot Software Development 13 / 24



What is a Physics Engine?

▶ In the background, simulators apply a model of physical laws — this model is provided by a
physics engine

▶ Most physical phenomena are governed by (ordinary or partial) differential equations — physics
engines thus need to perform numerical integration

▶ The algorithm that implements a solution to a numerical problem is referred to as a solver

▶ Physics engines are faced with a trade-off between accuracy and speed — accurate estimation
of physical phenomena requires more solver iterations, but this increases the time to reach a result

▶ Engines primarily differ in the solvers they implement and the way they set up the problem

▶ Most simulators support multiple physics engines

▶ The engine can be exchanged so that higher accuracy or higher efficiency is achieved, depending on
the use case

Simulation-Based Robot Software Development 13 / 24



A Multitude of Physics Engines

Bullet PhysX

MuJoCo Physics engines Newton

Havok Open Dynamics
Engine (ODE)

Vortex

Simulation-Based Robot Software Development 14 / 24



Body Meshes

The collision model of the complex side grid is a simple
box around it

This power plug has a detailed collision model

▶ Simulators represent objects by polygon meshes

▶ Objects are actually represented by two different models:

▶ Visual model: A model of the object that is rendered by a
simulator, including all object segments, materials, and
element colours

▶ Collision model: A model used for identifying body collisions
and computing collision impacts; this is typically simpler than
the visual model so that efficient collision detection procedures
can be used

Simulation-Based Robot Software Development 15 / 24



Body Meshes

The collision model of the complex side grid is a simple
box around it

This power plug has a detailed collision model

▶ Simulators represent objects by polygon meshes

▶ Objects are actually represented by two different models:

▶ Visual model: A model of the object that is rendered by a
simulator, including all object segments, materials, and
element colours

▶ Collision model: A model used for identifying body collisions
and computing collision impacts; this is typically simpler than
the visual model so that efficient collision detection procedures
can be used

Simulation-Based Robot Software Development 15 / 24



Body Meshes

The collision model of the complex side grid is a simple
box around it

This power plug has a detailed collision model

▶ Simulators represent objects by polygon meshes

▶ Objects are actually represented by two different models:

▶ Visual model: A model of the object that is rendered by a
simulator, including all object segments, materials, and
element colours

▶ Collision model: A model used for identifying body collisions
and computing collision impacts; this is typically simpler than
the visual model so that efficient collision detection procedures
can be used

Simulation-Based Robot Software Development 15 / 24



Body Meshes

The collision model of the complex side grid is a simple
box around it

This power plug has a detailed collision model

▶ Simulators represent objects by polygon meshes

▶ Objects are actually represented by two different models:

▶ Visual model: A model of the object that is rendered by a
simulator, including all object segments, materials, and
element colours

▶ Collision model: A model used for identifying body collisions
and computing collision impacts; this is typically simpler than
the visual model so that efficient collision detection procedures
can be used

Simulation-Based Robot Software Development 15 / 24



Colliding Bodies

https://docs.unrealengine.com/4.27/en-US/
InteractiveExperiences/Physics/Collision/Overview/

▶ The core of all physics engines is the handling of interactions
between bodies

▶ The interaction handling process is a sequence of two steps:

▶ Collision detection: This is a continuously running process
that checks whether there is an interaction between any parts
of a body

▶ Collision effect handling: When two bodies collide, the
impact on the bodies needs to be determined and applied

▶ If collisions are not handled or the handling is too slow
compared to the motion of the bodies of interest, the bodies
will overlap

Simulation-Based Robot Software Development 16 / 24

https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Physics/Collision/Overview/
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Physics/Collision/Overview/


Colliding Bodies

https://docs.unrealengine.com/4.27/en-US/
InteractiveExperiences/Physics/Collision/Overview/

▶ The core of all physics engines is the handling of interactions
between bodies

▶ The interaction handling process is a sequence of two steps:

▶ Collision detection: This is a continuously running process
that checks whether there is an interaction between any parts
of a body

▶ Collision effect handling: When two bodies collide, the
impact on the bodies needs to be determined and applied

▶ If collisions are not handled or the handling is too slow
compared to the motion of the bodies of interest, the bodies
will overlap

Simulation-Based Robot Software Development 16 / 24

https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Physics/Collision/Overview/
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Physics/Collision/Overview/


Colliding Bodies

https://docs.unrealengine.com/4.27/en-US/
InteractiveExperiences/Physics/Collision/Overview/

▶ The core of all physics engines is the handling of interactions
between bodies

▶ The interaction handling process is a sequence of two steps:

▶ Collision detection: This is a continuously running process
that checks whether there is an interaction between any parts
of a body

▶ Collision effect handling: When two bodies collide, the
impact on the bodies needs to be determined and applied

▶ If collisions are not handled or the handling is too slow
compared to the motion of the bodies of interest, the bodies
will overlap

Simulation-Based Robot Software Development 16 / 24

https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Physics/Collision/Overview/
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Physics/Collision/Overview/


Colliding Bodies

https://docs.unrealengine.com/4.27/en-US/
InteractiveExperiences/Physics/Collision/Overview/

▶ The core of all physics engines is the handling of interactions
between bodies

▶ The interaction handling process is a sequence of two steps:

▶ Collision detection: This is a continuously running process
that checks whether there is an interaction between any parts
of a body

▶ Collision effect handling: When two bodies collide, the
impact on the bodies needs to be determined and applied

▶ If collisions are not handled or the handling is too slow
compared to the motion of the bodies of interest, the bodies
will overlap

Simulation-Based Robot Software Development 16 / 24

https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Physics/Collision/Overview/
https://docs.unrealengine.com/4.27/en-US/InteractiveExperiences/Physics/Collision/Overview/


Soft-Body Dynamics

▶ The dynamic behaviour of deformable objects under external forces is referred to as soft-body
dynamics; this is in contrast to rigid-body dynamics, which, as the name says, is concerned with
the dynamic behaviour of rigid bodies

▶ Soft-body dynamics can be modelled in different ways, for instance using a spring-mass system
between different points on a body

▶ All physics engines are able to simulate rigid-body dynamics; soft-body dynamics is, on the other
hand, less commonly supported

▶ Soft-body dynamics solvers are more computationally demanding than rigid-body solvers, so some
physics engines do not implement them at all and opt for simpler models

Simulation-Based Robot Software Development 17 / 24



Soft-Body Dynamics

▶ The dynamic behaviour of deformable objects under external forces is referred to as soft-body
dynamics; this is in contrast to rigid-body dynamics, which, as the name says, is concerned with
the dynamic behaviour of rigid bodies

▶ Soft-body dynamics can be modelled in different ways, for instance using a spring-mass system
between different points on a body

▶ All physics engines are able to simulate rigid-body dynamics; soft-body dynamics is, on the other
hand, less commonly supported

▶ Soft-body dynamics solvers are more computationally demanding than rigid-body solvers, so some
physics engines do not implement them at all and opt for simpler models

Simulation-Based Robot Software Development 17 / 24



Soft-Body Dynamics

▶ The dynamic behaviour of deformable objects under external forces is referred to as soft-body
dynamics; this is in contrast to rigid-body dynamics, which, as the name says, is concerned with
the dynamic behaviour of rigid bodies

▶ Soft-body dynamics can be modelled in different ways, for instance using a spring-mass system
between different points on a body

▶ All physics engines are able to simulate rigid-body dynamics; soft-body dynamics is, on the other
hand, less commonly supported

▶ Soft-body dynamics solvers are more computationally demanding than rigid-body solvers, so some
physics engines do not implement them at all and opt for simpler models

Simulation-Based Robot Software Development 17 / 24



Unified Robot Description Format (URDF)

Simulation-Based Robot Software Development 18 / 24



What is URDF?

▶ The Unified Robot Description Format (URDF) is an XML-based language for describing
robots and simulated worlds

▶ URDF robot models can be found for most commonly used robots

▶ URDF models are typically developed and provided by the robot manufacturers themselves

▶ Some simulators have their own description formats, but most either support URDF directly or
provide tools to convert URDF to their custom formats

Simulation-Based Robot Software Development 19 / 24



URDF Elements

▶ In URDF, complex bodies, such as that of a robot,
are defined through composing elements and
connections between them, namely through links
and joints:

▶ Links are used to define body components

▶ Joints define connections between links

▶ URDF imposes a tree structure on bodies:

▶ The structure has a single root

▶ Each joint can only have one parent link

Based on the YouBot’s URDF:
https://github.com/a2s-institute/youbot description

<?xml version="1.0"?>
<robot name="youbot">

<link name="base_footprint"/>
<link name="base_link">

<visual>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<mesh filename="package://youbot_description/

meshes/youbot_base/base.dae"/>
</geometry>
<material name="youBot/DarkGrey"/>

</visual>
<inertial>
<mass value="22.0"/>
<origin xyz="0 0 0"/>
<inertia ixx="5.7" ixy="-0.01" ixz="1.3" iyy="5.7"

iyz="-0.007" izz="3.7"/>
</inertial>
<collision>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<box size="0.57 0.36 0.1" />
</geometry>

</collision>
</link>

<joint name="base_footprint_joint" type="fixed">
<origin xyz="0 0 0" rpy="0 0 0"/>
<child link="base_link"/>
<parent link="base_footprint"/>

</joint>
</robot>

Simulation-Based Robot Software Development 20 / 24

https://github.com/a2s-institute/youbot_description


URDF Elements

▶ In URDF, complex bodies, such as that of a robot,
are defined through composing elements and
connections between them, namely through links
and joints:

▶ Links are used to define body components

▶ Joints define connections between links

▶ URDF imposes a tree structure on bodies:

▶ The structure has a single root

▶ Each joint can only have one parent link

Based on the YouBot’s URDF:
https://github.com/a2s-institute/youbot description

<?xml version="1.0"?>
<robot name="youbot">

<link name="base_footprint"/>
<link name="base_link">

<visual>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<mesh filename="package://youbot_description/
meshes/youbot_base/base.dae"/>

</geometry>
<material name="youBot/DarkGrey"/>

</visual>
<inertial>

<mass value="22.0"/>
<origin xyz="0 0 0"/>
<inertia ixx="5.7" ixy="-0.01" ixz="1.3" iyy="5.7"

iyz="-0.007" izz="3.7"/>
</inertial>
<collision>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<box size="0.57 0.36 0.1" />

</geometry>
</collision>

</link>

<joint name="base_footprint_joint" type="fixed">
<origin xyz="0 0 0" rpy="0 0 0"/>
<child link="base_link"/>
<parent link="base_footprint"/>

</joint>
</robot>

Simulation-Based Robot Software Development 20 / 24

https://github.com/a2s-institute/youbot_description


URDF Elements

▶ In URDF, complex bodies, such as that of a robot,
are defined through composing elements and
connections between them, namely through links
and joints:

▶ Links are used to define body components

▶ Joints define connections between links

▶ URDF imposes a tree structure on bodies:

▶ The structure has a single root

▶ Each joint can only have one parent link

Based on the YouBot’s URDF:
https://github.com/a2s-institute/youbot description

<?xml version="1.0"?>
<robot name="youbot">

<link name="base_footprint"/>
<link name="base_link">
<visual>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<mesh filename="package://youbot_description/
meshes/youbot_base/base.dae"/>

</geometry>
<material name="youBot/DarkGrey"/>

</visual>
<inertial>

<mass value="22.0"/>
<origin xyz="0 0 0"/>
<inertia ixx="5.7" ixy="-0.01" ixz="1.3" iyy="5.7"

iyz="-0.007" izz="3.7"/>
</inertial>
<collision>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<box size="0.57 0.36 0.1" />

</geometry>
</collision>

</link>

<joint name="base_footprint_joint" type="fixed">
<origin xyz="0 0 0" rpy="0 0 0"/>
<child link="base_link"/>
<parent link="base_footprint"/>

</joint>
</robot>

Simulation-Based Robot Software Development 20 / 24

https://github.com/a2s-institute/youbot_description


Link

Based on the YouBot’s URDF:
https://github.com/a2s-institute/youbot description

<link name="wheel_link_fl">
<inertial>

<mass value="1.4"/>
<origin xyz="0 0 0"/>
<inertia ixx="0.01" ixy="-0.0007" ixz="0.0005" iyy="

0.02" iyz="-0.000004" izz="0.01"/>
</inertial>
<visual>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<sphere radius="0.0475"/>
</geometry>
<material name="youBot/Orange"/>

</visual>
<collision>

<origin xyz="0 0 0" rpy="1.57 0 0"/>
<geometry>

<cylinder radius="0.0475" length="0.0475"/>
</geometry>

</collision>
</link>

▶ A link defines an element of a body, positioned at
a given origin with respect to its parent — links
are thus nodes in the body’s tree structure

▶ Links have two elements:

▶ A visual element, which defines how the link looks
when rendered

▶ A collision element, which defines the link’s
collision model

▶ Both visual and collision elements can be defined
using either simple geometric shapes or meshes

▶ Physical properties, such as the link’s mass and
inertia, can be specified as well

Simulation-Based Robot Software Development 21 / 24

https://github.com/a2s-institute/youbot_description


Link

Based on the YouBot’s URDF:
https://github.com/a2s-institute/youbot description

<link name="wheel_link_fl">
<inertial>

<mass value="1.4"/>
<origin xyz="0 0 0"/>
<inertia ixx="0.01" ixy="-0.0007" ixz="0.0005" iyy="

0.02" iyz="-0.000004" izz="0.01"/>
</inertial>
<visual>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<sphere radius="0.0475"/>
</geometry>
<material name="youBot/Orange"/>

</visual>
<collision>

<origin xyz="0 0 0" rpy="1.57 0 0"/>
<geometry>

<cylinder radius="0.0475" length="0.0475"/>
</geometry>

</collision>
</link>

▶ A link defines an element of a body, positioned at
a given origin with respect to its parent — links
are thus nodes in the body’s tree structure

▶ Links have two elements:

▶ A visual element, which defines how the link looks
when rendered

▶ A collision element, which defines the link’s
collision model

▶ Both visual and collision elements can be defined
using either simple geometric shapes or meshes

▶ Physical properties, such as the link’s mass and
inertia, can be specified as well

Simulation-Based Robot Software Development 21 / 24

https://github.com/a2s-institute/youbot_description


Link

Based on the YouBot’s URDF:
https://github.com/a2s-institute/youbot description

<link name="wheel_link_fl">
<inertial>

<mass value="1.4"/>
<origin xyz="0 0 0"/>
<inertia ixx="0.01" ixy="-0.0007" ixz="0.0005" iyy="

0.02" iyz="-0.000004" izz="0.01"/>
</inertial>
<visual>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<sphere radius="0.0475"/>
</geometry>
<material name="youBot/Orange"/>

</visual>
<collision>

<origin xyz="0 0 0" rpy="1.57 0 0"/>
<geometry>

<cylinder radius="0.0475" length="0.0475"/>
</geometry>

</collision>
</link>

▶ A link defines an element of a body, positioned at
a given origin with respect to its parent — links
are thus nodes in the body’s tree structure

▶ Links have two elements:

▶ A visual element, which defines how the link looks
when rendered

▶ A collision element, which defines the link’s
collision model

▶ Both visual and collision elements can be defined
using either simple geometric shapes or meshes

▶ Physical properties, such as the link’s mass and
inertia, can be specified as well

Simulation-Based Robot Software Development 21 / 24

https://github.com/a2s-institute/youbot_description


Link

Based on the YouBot’s URDF:
https://github.com/a2s-institute/youbot description

<link name="wheel_link_fl">
<inertial>

<mass value="1.4"/>
<origin xyz="0 0 0"/>
<inertia ixx="0.01" ixy="-0.0007" ixz="0.0005" iyy="

0.02" iyz="-0.000004" izz="0.01"/>
</inertial>
<visual>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<sphere radius="0.0475"/>
</geometry>
<material name="youBot/Orange"/>

</visual>
<collision>

<origin xyz="0 0 0" rpy="1.57 0 0"/>
<geometry>

<cylinder radius="0.0475" length="0.0475"/>
</geometry>

</collision>
</link>

▶ A link defines an element of a body, positioned at
a given origin with respect to its parent — links
are thus nodes in the body’s tree structure

▶ Links have two elements:

▶ A visual element, which defines how the link looks
when rendered

▶ A collision element, which defines the link’s
collision model

▶ Both visual and collision elements can be defined
using either simple geometric shapes or meshes

▶ Physical properties, such as the link’s mass and
inertia, can be specified as well

Simulation-Based Robot Software Development 21 / 24

https://github.com/a2s-institute/youbot_description


Joints

Based on the YouBot’s URDF:
https://github.com/a2s-institute/youbot description

<joint name="wheel_joint_fl" type="continuous">
<origin xyz="0 0 0" rpy="0 0 0"/>
<axis xyz="0 1 0"/>
<parent link="caster_link_fl"/>
<child link="wheel_link_fl"/>
<dynamics damping="1.0" friction="1.0"/>

</joint>

<joint name="base_footprint_joint" type="fixed">
<origin xyz="0 0 0" rpy="0 0 0"/>
<child link="base_link"/>
<parent link="base_footprint"/>

</joint>

<joint name="wheel_joint_fl" type="continuous">
<origin xyz="0 0 0" rpy="0 0 0"/>
<axis xyz="0 1 0"/>
<parent link="caster_link_fl"/>
<child link="wheel_link_fl"/>
<limit effort="30" velocity="10"/>
<dynamics damping="1.0" friction="1.0"/>
<safety_controller k_velocity="10.0"/>

</joint>

▶ Joints specify connections between links — a joint
thus adds an edge to the body’s tree structure

▶ URDF supports multiple types of joints:

▶ Fixed: Joints that cannot move

▶ Continuous: Rotate freely around a given axis
without any limits

▶ Revolute: Rotate around a given axis, but within
specified limits

▶ Prismatic: Translate along a given axis

▶ Planar: Translate along two axes

▶ Floating: Able to move freely in 3D

▶ For some joint types, additional parameters can also
be specified, such as dynamics parameters or
controller coefficients

Simulation-Based Robot Software Development 22 / 24

https://github.com/a2s-institute/youbot_description


Joints

Based on the YouBot’s URDF:
https://github.com/a2s-institute/youbot description

<joint name="wheel_joint_fl" type="continuous">
<origin xyz="0 0 0" rpy="0 0 0"/>
<axis xyz="0 1 0"/>
<parent link="caster_link_fl"/>
<child link="wheel_link_fl"/>
<dynamics damping="1.0" friction="1.0"/>

</joint>

<joint name="base_footprint_joint" type="fixed">
<origin xyz="0 0 0" rpy="0 0 0"/>
<child link="base_link"/>
<parent link="base_footprint"/>

</joint>

<joint name="wheel_joint_fl" type="continuous">
<origin xyz="0 0 0" rpy="0 0 0"/>
<axis xyz="0 1 0"/>
<parent link="caster_link_fl"/>
<child link="wheel_link_fl"/>
<limit effort="30" velocity="10"/>
<dynamics damping="1.0" friction="1.0"/>
<safety_controller k_velocity="10.0"/>

</joint>

▶ Joints specify connections between links — a joint
thus adds an edge to the body’s tree structure

▶ URDF supports multiple types of joints:

▶ Fixed: Joints that cannot move

▶ Continuous: Rotate freely around a given axis
without any limits

▶ Revolute: Rotate around a given axis, but within
specified limits

▶ Prismatic: Translate along a given axis

▶ Planar: Translate along two axes

▶ Floating: Able to move freely in 3D

▶ For some joint types, additional parameters can also
be specified, such as dynamics parameters or
controller coefficients

Simulation-Based Robot Software Development 22 / 24

https://github.com/a2s-institute/youbot_description


Joints

Based on the YouBot’s URDF:
https://github.com/a2s-institute/youbot description

<joint name="wheel_joint_fl" type="continuous">
<origin xyz="0 0 0" rpy="0 0 0"/>
<axis xyz="0 1 0"/>
<parent link="caster_link_fl"/>
<child link="wheel_link_fl"/>
<dynamics damping="1.0" friction="1.0"/>

</joint>

<joint name="base_footprint_joint" type="fixed">
<origin xyz="0 0 0" rpy="0 0 0"/>
<child link="base_link"/>
<parent link="base_footprint"/>

</joint>

<joint name="wheel_joint_fl" type="continuous">
<origin xyz="0 0 0" rpy="0 0 0"/>
<axis xyz="0 1 0"/>
<parent link="caster_link_fl"/>
<child link="wheel_link_fl"/>
<limit effort="30" velocity="10"/>
<dynamics damping="1.0" friction="1.0"/>
<safety_controller k_velocity="10.0"/>

</joint>

▶ Joints specify connections between links — a joint
thus adds an edge to the body’s tree structure

▶ URDF supports multiple types of joints:

▶ Fixed: Joints that cannot move

▶ Continuous: Rotate freely around a given axis
without any limits

▶ Revolute: Rotate around a given axis, but within
specified limits

▶ Prismatic: Translate along a given axis

▶ Planar: Translate along two axes

▶ Floating: Able to move freely in 3D

▶ For some joint types, additional parameters can also
be specified, such as dynamics parameters or
controller coefficients

Simulation-Based Robot Software Development 22 / 24

https://github.com/a2s-institute/youbot_description


Xacro
▶ Mostly due to the XML nature, URDF

descriptions have several practical limitations:

▶ There may be significant repetition of
blocks that only differ in a few parameters

▶ Numerical parameters need to be
hard-coded, which reduces the
understandability of a description

▶ The descriptions can get rather large and
thus hard to read

▶ A better approach is to define reusable
URDF macros that can be parameterised
and reused — this is what xacro enables

▶ In practice, URDF robot descriptions are
typically written using xacro and not with pure
URDF

Adapted from Freddy’s URDF: https://github.com/a2s-institute/freddy description

<?xml version="1.0"?>
<robot xmlns:xacro="http://www.ros.org/wiki/xacro">

<xacro:property name="wheel_radius" value="0.05" />
<xacro:property name="wheel_mass" value="1.0" />
<xacro:property name="inertia_wheels" value="0.001" />
<xacro:include filename="$(find freddy_base_description)/urdf

/common.xacro" />

<xacro:macro name="kelo_wheel" params="name parent *origin
material_name">

<joint name="${name}_joint" type="fixed">
<xacro:insert_block name="origin" />
<parent link="${parent}"/>
<child link="${name}_link"/>

</joint>
<link name="${name}_link">

<visual>
<geometry>

<sphere radius="${wheel_radius}" />
</geometry>
<material name="${material_name}"/>

</visual>
<collision>

<geometry>
<sphere radius="${wheel_radius}" />

</geometry>
</collision>
<xacro:sphere_inertia mass="${wheel_mass}" radius="${

wheel_radius}" />
</link>

</xacro:macro>
</robot>

Simulation-Based Robot Software Development 23 / 24

https://github.com/a2s-institute/freddy_description


Xacro
▶ Mostly due to the XML nature, URDF

descriptions have several practical limitations:

▶ There may be significant repetition of
blocks that only differ in a few parameters

▶ Numerical parameters need to be
hard-coded, which reduces the
understandability of a description

▶ The descriptions can get rather large and
thus hard to read

▶ A better approach is to define reusable
URDF macros that can be parameterised
and reused — this is what xacro enables

▶ In practice, URDF robot descriptions are
typically written using xacro and not with pure
URDF

Adapted from Freddy’s URDF: https://github.com/a2s-institute/freddy description

<?xml version="1.0"?>
<robot xmlns:xacro="http://www.ros.org/wiki/xacro">

<xacro:property name="wheel_radius" value="0.05" />
<xacro:property name="wheel_mass" value="1.0" />
<xacro:property name="inertia_wheels" value="0.001" />
<xacro:include filename="$(find freddy_base_description)/urdf

/common.xacro" />

<xacro:macro name="kelo_wheel" params="name parent *origin
material_name">

<joint name="${name}_joint" type="fixed">
<xacro:insert_block name="origin" />
<parent link="${parent}"/>
<child link="${name}_link"/>

</joint>
<link name="${name}_link">

<visual>
<geometry>

<sphere radius="${wheel_radius}" />
</geometry>
<material name="${material_name}"/>

</visual>
<collision>

<geometry>
<sphere radius="${wheel_radius}" />

</geometry>
</collision>
<xacro:sphere_inertia mass="${wheel_mass}" radius="${

wheel_radius}" />
</link>

</xacro:macro>
</robot>

Simulation-Based Robot Software Development 23 / 24

https://github.com/a2s-institute/freddy_description


Xacro
▶ Mostly due to the XML nature, URDF

descriptions have several practical limitations:

▶ There may be significant repetition of
blocks that only differ in a few parameters

▶ Numerical parameters need to be
hard-coded, which reduces the
understandability of a description

▶ The descriptions can get rather large and
thus hard to read

▶ A better approach is to define reusable
URDF macros that can be parameterised
and reused — this is what xacro enables

▶ In practice, URDF robot descriptions are
typically written using xacro and not with pure
URDF

Adapted from Freddy’s URDF: https://github.com/a2s-institute/freddy description

<?xml version="1.0"?>
<robot xmlns:xacro="http://www.ros.org/wiki/xacro">

<xacro:property name="wheel_radius" value="0.05" />
<xacro:property name="wheel_mass" value="1.0" />
<xacro:property name="inertia_wheels" value="0.001" />
<xacro:include filename="$(find freddy_base_description)/urdf

/common.xacro" />

<xacro:macro name="kelo_wheel" params="name parent *origin
material_name">

<joint name="${name}_joint" type="fixed">
<xacro:insert_block name="origin" />
<parent link="${parent}"/>
<child link="${name}_link"/>

</joint>
<link name="${name}_link">

<visual>
<geometry>

<sphere radius="${wheel_radius}" />
</geometry>
<material name="${material_name}"/>

</visual>
<collision>

<geometry>
<sphere radius="${wheel_radius}" />

</geometry>
</collision>
<xacro:sphere_inertia mass="${wheel_mass}" radius="${

wheel_radius}" />
</link>

</xacro:macro>
</robot>

Simulation-Based Robot Software Development 23 / 24

https://github.com/a2s-institute/freddy_description


Xacro
▶ Mostly due to the XML nature, URDF

descriptions have several practical limitations:

▶ There may be significant repetition of
blocks that only differ in a few parameters

▶ Numerical parameters need to be
hard-coded, which reduces the
understandability of a description

▶ The descriptions can get rather large and
thus hard to read

▶ A better approach is to define reusable
URDF macros that can be parameterised
and reused — this is what xacro enables

▶ In practice, URDF robot descriptions are
typically written using xacro and not with pure
URDF

Adapted from Freddy’s URDF: https://github.com/a2s-institute/freddy description

<?xml version="1.0"?>
<robot xmlns:xacro="http://www.ros.org/wiki/xacro">

<xacro:property name="wheel_radius" value="0.05" />
<xacro:property name="wheel_mass" value="1.0" />
<xacro:property name="inertia_wheels" value="0.001" />
<xacro:include filename="$(find freddy_base_description)/urdf

/common.xacro" />

<xacro:macro name="kelo_wheel" params="name parent *origin
material_name">

<joint name="${name}_joint" type="fixed">
<xacro:insert_block name="origin" />
<parent link="${parent}"/>
<child link="${name}_link"/>

</joint>
<link name="${name}_link">

<visual>
<geometry>

<sphere radius="${wheel_radius}" />
</geometry>
<material name="${material_name}"/>

</visual>
<collision>

<geometry>
<sphere radius="${wheel_radius}" />

</geometry>
</collision>
<xacro:sphere_inertia mass="${wheel_mass}" radius="${

wheel_radius}" />
</link>

</xacro:macro>
</robot>

Simulation-Based Robot Software Development 23 / 24

https://github.com/a2s-institute/freddy_description


Xacro
▶ Mostly due to the XML nature, URDF

descriptions have several practical limitations:

▶ There may be significant repetition of
blocks that only differ in a few parameters

▶ Numerical parameters need to be
hard-coded, which reduces the
understandability of a description

▶ The descriptions can get rather large and
thus hard to read

▶ A better approach is to define reusable
URDF macros that can be parameterised
and reused — this is what xacro enables

▶ In practice, URDF robot descriptions are
typically written using xacro and not with pure
URDF

Adapted from Freddy’s URDF: https://github.com/a2s-institute/freddy description

<?xml version="1.0"?>
<robot xmlns:xacro="http://www.ros.org/wiki/xacro">

<xacro:property name="wheel_radius" value="0.05" />
<xacro:property name="wheel_mass" value="1.0" />
<xacro:property name="inertia_wheels" value="0.001" />
<xacro:include filename="$(find freddy_base_description)/urdf

/common.xacro" />

<xacro:macro name="kelo_wheel" params="name parent *origin
material_name">

<joint name="${name}_joint" type="fixed">
<xacro:insert_block name="origin" />
<parent link="${parent}"/>
<child link="${name}_link"/>

</joint>
<link name="${name}_link">

<visual>
<geometry>

<sphere radius="${wheel_radius}" />
</geometry>
<material name="${material_name}"/>

</visual>
<collision>

<geometry>
<sphere radius="${wheel_radius}" />

</geometry>
</collision>
<xacro:sphere_inertia mass="${wheel_mass}" radius="${

wheel_radius}" />
</link>

</xacro:macro>
</robot>

Simulation-Based Robot Software Development 23 / 24

https://github.com/a2s-institute/freddy_description


Xacro
▶ Mostly due to the XML nature, URDF

descriptions have several practical limitations:

▶ There may be significant repetition of
blocks that only differ in a few parameters

▶ Numerical parameters need to be
hard-coded, which reduces the
understandability of a description

▶ The descriptions can get rather large and
thus hard to read

▶ A better approach is to define reusable
URDF macros that can be parameterised
and reused — this is what xacro enables

▶ In practice, URDF robot descriptions are
typically written using xacro and not with pure
URDF

Adapted from Freddy’s URDF: https://github.com/a2s-institute/freddy description

<?xml version="1.0"?>
<robot xmlns:xacro="http://www.ros.org/wiki/xacro">

<xacro:property name="wheel_radius" value="0.05" />
<xacro:property name="wheel_mass" value="1.0" />
<xacro:property name="inertia_wheels" value="0.001" />
<xacro:include filename="$(find freddy_base_description)/urdf

/common.xacro" />

<xacro:macro name="kelo_wheel" params="name parent *origin
material_name">

<joint name="${name}_joint" type="fixed">
<xacro:insert_block name="origin" />
<parent link="${parent}"/>
<child link="${name}_link"/>

</joint>
<link name="${name}_link">

<visual>
<geometry>

<sphere radius="${wheel_radius}" />
</geometry>
<material name="${material_name}"/>

</visual>
<collision>

<geometry>
<sphere radius="${wheel_radius}" />

</geometry>
</collision>
<xacro:sphere_inertia mass="${wheel_mass}" radius="${

wheel_radius}" />
</link>

</xacro:macro>
</robot>

Simulation-Based Robot Software Development 23 / 24

https://github.com/a2s-institute/freddy_description


Xacro
▶ Mostly due to the XML nature, URDF

descriptions have several practical limitations:

▶ There may be significant repetition of
blocks that only differ in a few parameters

▶ Numerical parameters need to be
hard-coded, which reduces the
understandability of a description

▶ The descriptions can get rather large and
thus hard to read

▶ A better approach is to define reusable
URDF macros that can be parameterised
and reused — this is what xacro enables

▶ In practice, URDF robot descriptions are
typically written using xacro and not with pure
URDF

Adapted from Freddy’s URDF: https://github.com/a2s-institute/freddy description

<?xml version="1.0"?>
<robot xmlns:xacro="http://www.ros.org/wiki/xacro">

<xacro:property name="wheel_radius" value="0.05" />
<xacro:property name="wheel_mass" value="1.0" />
<xacro:property name="inertia_wheels" value="0.001" />
<xacro:include filename="$(find freddy_base_description)/urdf

/common.xacro" />

<xacro:macro name="kelo_wheel" params="name parent *origin
material_name">

<joint name="${name}_joint" type="fixed">
<xacro:insert_block name="origin" />
<parent link="${parent}"/>
<child link="${name}_link"/>

</joint>
<link name="${name}_link">

<visual>
<geometry>

<sphere radius="${wheel_radius}" />
</geometry>
<material name="${material_name}"/>

</visual>
<collision>

<geometry>
<sphere radius="${wheel_radius}" />

</geometry>
</collision>
<xacro:sphere_inertia mass="${wheel_mass}" radius="${

wheel_radius}" />
</link>

</xacro:macro>
</robot>

Simulation-Based Robot Software Development 23 / 24

https://github.com/a2s-institute/freddy_description


Summary

▶ Robot development is often supported by the use of simulators, which can be used both for
algorithmic testing as well as in the context of machine learning

▶ All simulators use physics engines, which model physical phenomena and provide solvers for
approximating those

▶ URDF and its improvement xacro are commonly used for describing robots and specifying various
parameters associated with robot models

Simulation-Based Robot Software Development 24 / 24


