
Robot Software Development
Lifecycle

Dr. Alex Mitrevski
Master of Autonomous Systems



Structure

▶ Source control

▶ Continuous integration

▶ Issue management

Robot Software Development Lifecycle 2 / 21



Essential elements of (robot)
software lifecycle management

Source
control

Continuous
integration and testing

Issue
management

Robot Software Development Lifecycle 3 / 21



Source Control Basics

▶ Source control (aka version control) is a process of managing changes to source code files

▶ In this context, we say that a project is stored in a repository, which is a collection of files
under source control

▶ There are two main repository versions that we refer to when discussing source control:

▶ Upstream version: The version of a repository that is hosted centrally (e.g. on an external server)
and that everyone can access

▶ Local clone: A local copy of a repository, whose changes may be made available in the upstream
version at a later point

Robot Software Development Lifecycle 4 / 21



Source Control Basics

▶ Source control (aka version control) is a process of managing changes to source code files

▶ In this context, we say that a project is stored in a repository, which is a collection of files
under source control

▶ There are two main repository versions that we refer to when discussing source control:

▶ Upstream version: The version of a repository that is hosted centrally (e.g. on an external server)
and that everyone can access

▶ Local clone: A local copy of a repository, whose changes may be made available in the upstream
version at a later point

Robot Software Development Lifecycle 4 / 21



Source Control Basics

▶ Source control (aka version control) is a process of managing changes to source code files

▶ In this context, we say that a project is stored in a repository, which is a collection of files
under source control

▶ There are two main repository versions that we refer to when discussing source control:

▶ Upstream version: The version of a repository that is hosted centrally (e.g. on an external server)
and that everyone can access

▶ Local clone: A local copy of a repository, whose changes may be made available in the upstream
version at a later point

Robot Software Development Lifecycle 4 / 21



Source Control Basics

▶ Source control (aka version control) is a process of managing changes to source code files

▶ In this context, we say that a project is stored in a repository, which is a collection of files
under source control

▶ There are two main repository versions that we refer to when discussing source control:

▶ Upstream version: The version of a repository that is hosted centrally (e.g. on an external server)
and that everyone can access

▶ Local clone: A local copy of a repository, whose changes may be made available in the upstream
version at a later point

Robot Software Development Lifecycle 4 / 21



Source Control Basics

▶ Source control (aka version control) is a process of managing changes to source code files

▶ In this context, we say that a project is stored in a repository, which is a collection of files
under source control

▶ There are two main repository versions that we refer to when discussing source control:

▶ Upstream version: The version of a repository that is hosted centrally (e.g. on an external server)
and that everyone can access

▶ Local clone: A local copy of a repository, whose changes may be made available in the upstream
version at a later point

Robot Software Development Lifecycle 4 / 21



Why Source Control?

Source control is an essential element of modern software development — in robotics and
otherwise — for a multitude of reasons:

Repository backup

Backup is one of the main motivations for using
source control, both to prevent code losses and
because it makes it relatively easy to revert
to old versions

Collaborative development

Source control provides shared access to a
code repository and an organised way of
managing the contributions of individual
developers to the repository

Preserving the development history

Source control is also a way to preserve the
development history of a project — the
usefulness thereof depends on the quality of
the commit messages!

Code sharing and reusability

The way in which free and open source
software is accessed and can be contributed
to is also simplified through source control

Robot Software Development Lifecycle 5 / 21



Why Source Control?

Source control is an essential element of modern software development — in robotics and
otherwise — for a multitude of reasons:

Repository backup

Backup is one of the main motivations for using
source control, both to prevent code losses and
because it makes it relatively easy to revert
to old versions

Collaborative development

Source control provides shared access to a
code repository and an organised way of
managing the contributions of individual
developers to the repository

Preserving the development history

Source control is also a way to preserve the
development history of a project — the
usefulness thereof depends on the quality of
the commit messages!

Code sharing and reusability

The way in which free and open source
software is accessed and can be contributed
to is also simplified through source control

Robot Software Development Lifecycle 5 / 21



Why Source Control?

Source control is an essential element of modern software development — in robotics and
otherwise — for a multitude of reasons:

Repository backup

Backup is one of the main motivations for using
source control, both to prevent code losses and
because it makes it relatively easy to revert
to old versions

Collaborative development

Source control provides shared access to a
code repository and an organised way of
managing the contributions of individual
developers to the repository

Preserving the development history

Source control is also a way to preserve the
development history of a project — the
usefulness thereof depends on the quality of
the commit messages!

Code sharing and reusability

The way in which free and open source
software is accessed and can be contributed
to is also simplified through source control

Robot Software Development Lifecycle 5 / 21



Why Source Control?

Source control is an essential element of modern software development — in robotics and
otherwise — for a multitude of reasons:

Repository backup

Backup is one of the main motivations for using
source control, both to prevent code losses and
because it makes it relatively easy to revert
to old versions

Collaborative development

Source control provides shared access to a
code repository and an organised way of
managing the contributions of individual
developers to the repository

Preserving the development history

Source control is also a way to preserve the
development history of a project — the
usefulness thereof depends on the quality of
the commit messages!

Code sharing and reusability

The way in which free and open source
software is accessed and can be contributed
to is also simplified through source control

Robot Software Development Lifecycle 5 / 21



Why Source Control?

Source control is an essential element of modern software development — in robotics and
otherwise — for a multitude of reasons:

Repository backup

Backup is one of the main motivations for using
source control, both to prevent code losses and
because it makes it relatively easy to revert
to old versions

Collaborative development

Source control provides shared access to a
code repository and an organised way of
managing the contributions of individual
developers to the repository

Preserving the development history

Source control is also a way to preserve the
development history of a project — the
usefulness thereof depends on the quality of
the commit messages!

Code sharing and reusability

The way in which free and open source
software is accessed and can be contributed
to is also simplified through source control

Robot Software Development Lifecycle 5 / 21



Repository Interaction

▶ Interaction with a repository occurs through operations that register file changes or interact
with a remote repository

▶ The primary operations in a repository are staging, committing, pushing, and pulling

Pulling

The process of retrieving changes from the
central repository and recording those in the
local repository’s tree

Staging

Registers an intention to record changes to
existing repository files or to add new files to
a repository

Committing

Follows the staging process and records file
changes to a repository’s local history tree

Pushing

Records any local changes in the repository’s
history tree to the central repository

Robot Software Development Lifecycle 6 / 21



Repository Interaction

▶ Interaction with a repository occurs through operations that register file changes or interact
with a remote repository

▶ The primary operations in a repository are staging, committing, pushing, and pulling

Pulling

The process of retrieving changes from the
central repository and recording those in the
local repository’s tree

Staging

Registers an intention to record changes to
existing repository files or to add new files to
a repository

Committing

Follows the staging process and records file
changes to a repository’s local history tree

Pushing

Records any local changes in the repository’s
history tree to the central repository

Robot Software Development Lifecycle 6 / 21



Repository Interaction

▶ Interaction with a repository occurs through operations that register file changes or interact
with a remote repository

▶ The primary operations in a repository are staging, committing, pushing, and pulling

Pulling

The process of retrieving changes from the
central repository and recording those in the
local repository’s tree

Staging

Registers an intention to record changes to
existing repository files or to add new files to
a repository

Committing

Follows the staging process and records file
changes to a repository’s local history tree

Pushing

Records any local changes in the repository’s
history tree to the central repository

Robot Software Development Lifecycle 6 / 21



Repository Interaction

▶ Interaction with a repository occurs through operations that register file changes or interact
with a remote repository

▶ The primary operations in a repository are staging, committing, pushing, and pulling

Pulling

The process of retrieving changes from the
central repository and recording those in the
local repository’s tree

Staging

Registers an intention to record changes to
existing repository files or to add new files to
a repository

Committing

Follows the staging process and records file
changes to a repository’s local history tree

Pushing

Records any local changes in the repository’s
history tree to the central repository

Robot Software Development Lifecycle 6 / 21



Repository Interaction

▶ Interaction with a repository occurs through operations that register file changes or interact
with a remote repository

▶ The primary operations in a repository are staging, committing, pushing, and pulling

Pulling

The process of retrieving changes from the
central repository and recording those in the
local repository’s tree

Staging

Registers an intention to record changes to
existing repository files or to add new files to
a repository

Committing

Follows the staging process and records file
changes to a repository’s local history tree

Pushing

Records any local changes in the repository’s
history tree to the central repository

Robot Software Development Lifecycle 6 / 21



Repository Interaction

▶ Interaction with a repository occurs through operations that register file changes or interact
with a remote repository

▶ The primary operations in a repository are staging, committing, pushing, and pulling

Pulling

The process of retrieving changes from the
central repository and recording those in the
local repository’s tree

Staging

Registers an intention to record changes to
existing repository files or to add new files to
a repository

Committing

Follows the staging process and records file
changes to a repository’s local history tree

Pushing

Records any local changes in the repository’s
history tree to the central repository

Robot Software Development Lifecycle 6 / 21



Git

▶ There are various source control systems, but Git is the most widespread system, particularly
due to platforms such as GitHub and GitLab, which significantly simplify the interaction with and
management of Git repositories

▶ Git is a decentralised source control system — every developer has their own copy of a
repository and changes are integrated into a main repository through merge operations

▶ This is opposed to centalised source control systems, where commits are directly added to a central
repository

▶ Due to its decentralised nature, Git enables offline working

▶ In principle, Git can be used without a central repository — useful for maintaining local backups

Robot Software Development Lifecycle 7 / 21



Git

▶ There are various source control systems, but Git is the most widespread system, particularly
due to platforms such as GitHub and GitLab, which significantly simplify the interaction with and
management of Git repositories

▶ Git is a decentralised source control system — every developer has their own copy of a
repository and changes are integrated into a main repository through merge operations

▶ This is opposed to centalised source control systems, where commits are directly added to a central
repository

▶ Due to its decentralised nature, Git enables offline working

▶ In principle, Git can be used without a central repository — useful for maintaining local backups

Robot Software Development Lifecycle 7 / 21



Git

▶ There are various source control systems, but Git is the most widespread system, particularly
due to platforms such as GitHub and GitLab, which significantly simplify the interaction with and
management of Git repositories

▶ Git is a decentralised source control system — every developer has their own copy of a
repository and changes are integrated into a main repository through merge operations

▶ This is opposed to centalised source control systems, where commits are directly added to a central
repository

▶ Due to its decentralised nature, Git enables offline working

▶ In principle, Git can be used without a central repository — useful for maintaining local backups

Robot Software Development Lifecycle 7 / 21



Branches

▶ Collaborative development with repositories is typically done through branches

main

devel

feature/A ... feature/Z fix/A ... fix/Z

▶ There are many possible branching models — each team
may have its own conventions for that — but the following
decomposition is one that is followed often:

▶ A main branch that has a stable version of the code and
which is updated only occasionally (e.g. twice a year)

▶ A devel branch, which combines new features and
bug fixes that are planned to be integrated into main

▶ An arbitrary number of feature branches, each of which
contains work-in-progress code for a new feature

▶ An arbitrary number of hotfix branches, each containing
work-in-progress code for a bug fix

▶ Code from a child branch is integrated into a parent branch via a merge (aka pull) request

Robot Software Development Lifecycle 8 / 21



Branches

▶ Collaborative development with repositories is typically done through branches

main

devel

feature/A ... feature/Z fix/A ... fix/Z

▶ There are many possible branching models — each team
may have its own conventions for that — but the following
decomposition is one that is followed often:

▶ A main branch that has a stable version of the code and
which is updated only occasionally (e.g. twice a year)

▶ A devel branch, which combines new features and
bug fixes that are planned to be integrated into main

▶ An arbitrary number of feature branches, each of which
contains work-in-progress code for a new feature

▶ An arbitrary number of hotfix branches, each containing
work-in-progress code for a bug fix

▶ Code from a child branch is integrated into a parent branch via a merge (aka pull) request

Robot Software Development Lifecycle 8 / 21



Branches

▶ Collaborative development with repositories is typically done through branches

main

devel

feature/A ... feature/Z fix/A ... fix/Z

▶ There are many possible branching models — each team
may have its own conventions for that — but the following
decomposition is one that is followed often:

▶ A main branch that has a stable version of the code and
which is updated only occasionally (e.g. twice a year)

▶ A devel branch, which combines new features and
bug fixes that are planned to be integrated into main

▶ An arbitrary number of feature branches, each of which
contains work-in-progress code for a new feature

▶ An arbitrary number of hotfix branches, each containing
work-in-progress code for a bug fix

▶ Code from a child branch is integrated into a parent branch via a merge (aka pull) request

Robot Software Development Lifecycle 8 / 21



Branches

▶ Collaborative development with repositories is typically done through branches

main

devel

feature/A ... feature/Z fix/A ... fix/Z

▶ There are many possible branching models — each team
may have its own conventions for that — but the following
decomposition is one that is followed often:

▶ A main branch that has a stable version of the code and
which is updated only occasionally (e.g. twice a year)

▶ A devel branch, which combines new features and
bug fixes that are planned to be integrated into main

▶ An arbitrary number of feature branches, each of which
contains work-in-progress code for a new feature

▶ An arbitrary number of hotfix branches, each containing
work-in-progress code for a bug fix

▶ Code from a child branch is integrated into a parent branch via a merge (aka pull) request

Robot Software Development Lifecycle 8 / 21



Branches

▶ Collaborative development with repositories is typically done through branches

main

devel

feature/A ... feature/Z fix/A ... fix/Z

▶ There are many possible branching models — each team
may have its own conventions for that — but the following
decomposition is one that is followed often:

▶ A main branch that has a stable version of the code and
which is updated only occasionally (e.g. twice a year)

▶ A devel branch, which combines new features and
bug fixes that are planned to be integrated into main

▶ An arbitrary number of feature branches, each of which
contains work-in-progress code for a new feature

▶ An arbitrary number of hotfix branches, each containing
work-in-progress code for a bug fix

▶ Code from a child branch is integrated into a parent branch via a merge (aka pull) request

Robot Software Development Lifecycle 8 / 21



Branches

▶ Collaborative development with repositories is typically done through branches

main

devel

feature/A ... feature/Z fix/A ... fix/Z

▶ There are many possible branching models — each team
may have its own conventions for that — but the following
decomposition is one that is followed often:

▶ A main branch that has a stable version of the code and
which is updated only occasionally (e.g. twice a year)

▶ A devel branch, which combines new features and
bug fixes that are planned to be integrated into main

▶ An arbitrary number of feature branches, each of which
contains work-in-progress code for a new feature

▶ An arbitrary number of hotfix branches, each containing
work-in-progress code for a bug fix

▶ Code from a child branch is integrated into a parent branch via a merge (aka pull) request

Robot Software Development Lifecycle 8 / 21



Branches

▶ Collaborative development with repositories is typically done through branches

main

devel

feature/A ... feature/Z fix/A ... fix/Z

▶ There are many possible branching models — each team
may have its own conventions for that — but the following
decomposition is one that is followed often:

▶ A main branch that has a stable version of the code and
which is updated only occasionally (e.g. twice a year)

▶ A devel branch, which combines new features and
bug fixes that are planned to be integrated into main

▶ An arbitrary number of feature branches, each of which
contains work-in-progress code for a new feature

▶ An arbitrary number of hotfix branches, each containing
work-in-progress code for a bug fix

▶ Code from a child branch is integrated into a parent branch via a merge (aka pull) request

Robot Software Development Lifecycle 8 / 21



Forks

▶ Decentralised version control systems enable creating (independent) repository copies, called forks

▶ A fork is a personal, online copy of an existing repository

▶ Changes made in the forked repository are not reflected in the upstream repository — a fork thus
allows to customise the original code based on one’s own needs

▶ But pull requests can also be made to the upstream repository

▶ Forks simplify repository access management for large, very distributed teams

▶ Instead of giving every contributor access to the main repository, everyone maintains their own fork
and makes a pull request later

▶ For this reason, forks are essential for large open-source projects, where anyone can contribute

Robot Software Development Lifecycle 9 / 21



Forks

▶ Decentralised version control systems enable creating (independent) repository copies, called forks

▶ A fork is a personal, online copy of an existing repository

▶ Changes made in the forked repository are not reflected in the upstream repository — a fork thus
allows to customise the original code based on one’s own needs

▶ But pull requests can also be made to the upstream repository

▶ Forks simplify repository access management for large, very distributed teams

▶ Instead of giving every contributor access to the main repository, everyone maintains their own fork
and makes a pull request later

▶ For this reason, forks are essential for large open-source projects, where anyone can contribute

Robot Software Development Lifecycle 9 / 21



Forks

▶ Decentralised version control systems enable creating (independent) repository copies, called forks

▶ A fork is a personal, online copy of an existing repository

▶ Changes made in the forked repository are not reflected in the upstream repository — a fork thus
allows to customise the original code based on one’s own needs

▶ But pull requests can also be made to the upstream repository

▶ Forks simplify repository access management for large, very distributed teams

▶ Instead of giving every contributor access to the main repository, everyone maintains their own fork
and makes a pull request later

▶ For this reason, forks are essential for large open-source projects, where anyone can contribute

Robot Software Development Lifecycle 9 / 21



Typical Collaborative Development Workflow

Illustration of a typical collaborative development
workflow. Courtesy of Minh Nguyen.

▶ Code on branches and/or forks is integrated via pull requests

▶ A pull request is always created against a specific branch —
if accepted, the changes will be merged in that branch

▶ The branch that contains changes is usually referred to as a
source branch; the branch in which the changes should be
merged is called a target branch

▶ A typical workflow for collaborative development goes through
the following steps:

1. Changes are made locally and are pushed to a branch,
potentially in a personal fork

2. Once the development of the feature or fix is completed, a
pull request is created

3. Feature and fix branches are usually deleted after being
merged

Robot Software Development Lifecycle 10 / 21



Typical Collaborative Development Workflow

Illustration of a typical collaborative development
workflow. Courtesy of Minh Nguyen.

▶ Code on branches and/or forks is integrated via pull requests

▶ A pull request is always created against a specific branch —
if accepted, the changes will be merged in that branch

▶ The branch that contains changes is usually referred to as a
source branch; the branch in which the changes should be
merged is called a target branch

▶ A typical workflow for collaborative development goes through
the following steps:

1. Changes are made locally and are pushed to a branch,
potentially in a personal fork

2. Once the development of the feature or fix is completed, a
pull request is created

3. Feature and fix branches are usually deleted after being
merged

Robot Software Development Lifecycle 10 / 21



Typical Collaborative Development Workflow

Illustration of a typical collaborative development
workflow. Courtesy of Minh Nguyen.

▶ Code on branches and/or forks is integrated via pull requests

▶ A pull request is always created against a specific branch —
if accepted, the changes will be merged in that branch

▶ The branch that contains changes is usually referred to as a
source branch; the branch in which the changes should be
merged is called a target branch

▶ A typical workflow for collaborative development goes through
the following steps:

1. Changes are made locally and are pushed to a branch,
potentially in a personal fork

2. Once the development of the feature or fix is completed, a
pull request is created

3. Feature and fix branches are usually deleted after being
merged

Robot Software Development Lifecycle 10 / 21



Typical Collaborative Development Workflow

Illustration of a typical collaborative development
workflow. Courtesy of Minh Nguyen.

▶ Code on branches and/or forks is integrated via pull requests

▶ A pull request is always created against a specific branch —
if accepted, the changes will be merged in that branch

▶ The branch that contains changes is usually referred to as a
source branch; the branch in which the changes should be
merged is called a target branch

▶ A typical workflow for collaborative development goes through
the following steps:

1. Changes are made locally and are pushed to a branch,
potentially in a personal fork

2. Once the development of the feature or fix is completed, a
pull request is created

3. Feature and fix branches are usually deleted after being
merged

Robot Software Development Lifecycle 10 / 21



Typical Collaborative Development Workflow

Illustration of a typical collaborative development
workflow. Courtesy of Minh Nguyen.

▶ Code on branches and/or forks is integrated via pull requests

▶ A pull request is always created against a specific branch —
if accepted, the changes will be merged in that branch

▶ The branch that contains changes is usually referred to as a
source branch; the branch in which the changes should be
merged is called a target branch

▶ A typical workflow for collaborative development goes through
the following steps:

1. Changes are made locally and are pushed to a branch,
potentially in a personal fork

2. Once the development of the feature or fix is completed, a
pull request is created

3. Feature and fix branches are usually deleted after being
merged

Robot Software Development Lifecycle 10 / 21



Typical Collaborative Development Workflow

Illustration of a typical collaborative development
workflow. Courtesy of Minh Nguyen.

▶ Code on branches and/or forks is integrated via pull requests

▶ A pull request is always created against a specific branch —
if accepted, the changes will be merged in that branch

▶ The branch that contains changes is usually referred to as a
source branch; the branch in which the changes should be
merged is called a target branch

▶ A typical workflow for collaborative development goes through
the following steps:

1. Changes are made locally and are pushed to a branch,
potentially in a personal fork

2. Once the development of the feature or fix is completed, a
pull request is created

3. Feature and fix branches are usually deleted after being
merged

Robot Software Development Lifecycle 10 / 21



Merge Conflicts

Illustration of a pull request workflow where merge conflicts appear.
Courtesy of Minh Nguyen.

▶ When a pull request is made, it may happen that there is
a merge conflict that makes it impossible to merge the
changes directly

▶ In this case, conflict resolution is necessary before a
merge is possible

▶ A merge conflict appears when one or more files that
are included in the pull request have been edited on
the target branch since the last time the source branch
was synchronised with its parent

▶ Conflict resolution is a manual process that requires
careful consideration of the conflicting file lines so
that important changes are not lost

▶ The best strategy to avoid merge conflicts is to pull from the parent branch / repository
frequently so that new file edits are integrated before a pull request is even created

Robot Software Development Lifecycle 11 / 21



Merge Conflicts

Illustration of a pull request workflow where merge conflicts appear.
Courtesy of Minh Nguyen.

▶ When a pull request is made, it may happen that there is
a merge conflict that makes it impossible to merge the
changes directly

▶ In this case, conflict resolution is necessary before a
merge is possible

▶ A merge conflict appears when one or more files that
are included in the pull request have been edited on
the target branch since the last time the source branch
was synchronised with its parent

▶ Conflict resolution is a manual process that requires
careful consideration of the conflicting file lines so
that important changes are not lost

▶ The best strategy to avoid merge conflicts is to pull from the parent branch / repository
frequently so that new file edits are integrated before a pull request is even created

Robot Software Development Lifecycle 11 / 21



Merge Conflicts

Illustration of a pull request workflow where merge conflicts appear.
Courtesy of Minh Nguyen.

▶ When a pull request is made, it may happen that there is
a merge conflict that makes it impossible to merge the
changes directly

▶ In this case, conflict resolution is necessary before a
merge is possible

▶ A merge conflict appears when one or more files that
are included in the pull request have been edited on
the target branch since the last time the source branch
was synchronised with its parent

▶ Conflict resolution is a manual process that requires
careful consideration of the conflicting file lines so
that important changes are not lost

▶ The best strategy to avoid merge conflicts is to pull from the parent branch / repository
frequently so that new file edits are integrated before a pull request is even created

Robot Software Development Lifecycle 11 / 21



Merge Conflicts

Illustration of a pull request workflow where merge conflicts appear.
Courtesy of Minh Nguyen.

▶ When a pull request is made, it may happen that there is
a merge conflict that makes it impossible to merge the
changes directly

▶ In this case, conflict resolution is necessary before a
merge is possible

▶ A merge conflict appears when one or more files that
are included in the pull request have been edited on
the target branch since the last time the source branch
was synchronised with its parent

▶ Conflict resolution is a manual process that requires
careful consideration of the conflicting file lines so
that important changes are not lost

▶ The best strategy to avoid merge conflicts is to pull from the parent branch / repository
frequently so that new file edits are integrated before a pull request is even created

Robot Software Development Lifecycle 11 / 21



Essential elements of (robot)
software lifecycle management

Source
control

Continuous
integration and testing

Issue
management

Robot Software Development Lifecycle 12 / 21



Unit Testing

▶ As discussed in our first lecture of the course, testing is one of the essential elements of
(robot) software development

▶ A robot has many components though,
such that we are interested in whether
they all work correctly as individual units
before they can be integrated together

▶ Unit testing is a process of testing the
correctness of individual components
in a code base

▶ Most languages have standard libraries for
writing and executing unit tests, e.g.
unittest in Python

Example of a Python-based unit test for a library that interacts with data in a database. Taken
from https://github.com/ropod-project/black-box-tools

class TestDataUtils(unittest.TestCase):
@classmethod
def setUpClass(cls):

cls.test_db_name = "bb_tools_test_data"
test_dir = os.path.abspath(os.path.dirname(__file__))
cls.test_db_dir = os.path.join(test_dir, cls.test_db_name)
cls.collection_name = ’ros_ropod_cmd_vel’

host, port = cls._get_db_host_and_port()
cls.client = pm.MongoClient(host=host, port=port)
success = cls._restore_test_db()
assert(success)

@classmethod
def tearDownClass(cls):

cls._drop_test_db()

def test_get_all_measurement(self):
database = self.client[self.test_db_name]
collection = database[self.collection_name]
doc_cursor = collection.find({})
docs = [doc for doc in doc_cursor]
measurements = DataUtils.get_all_measurements(docs, ’linear/x’)
self.assertEqual(measurements.shape, (149,))

Robot Software Development Lifecycle 13 / 21

https://github.com/ropod-project/black-box-tools


Unit Testing

▶ As discussed in our first lecture of the course, testing is one of the essential elements of
(robot) software development

▶ A robot has many components though,
such that we are interested in whether
they all work correctly as individual units
before they can be integrated together

▶ Unit testing is a process of testing the
correctness of individual components
in a code base

▶ Most languages have standard libraries for
writing and executing unit tests, e.g.
unittest in Python

Example of a Python-based unit test for a library that interacts with data in a database. Taken
from https://github.com/ropod-project/black-box-tools

class TestDataUtils(unittest.TestCase):
@classmethod
def setUpClass(cls):

cls.test_db_name = "bb_tools_test_data"
test_dir = os.path.abspath(os.path.dirname(__file__))
cls.test_db_dir = os.path.join(test_dir, cls.test_db_name)
cls.collection_name = ’ros_ropod_cmd_vel’

host, port = cls._get_db_host_and_port()
cls.client = pm.MongoClient(host=host, port=port)
success = cls._restore_test_db()
assert(success)

@classmethod
def tearDownClass(cls):

cls._drop_test_db()

def test_get_all_measurement(self):
database = self.client[self.test_db_name]
collection = database[self.collection_name]
doc_cursor = collection.find({})
docs = [doc for doc in doc_cursor]
measurements = DataUtils.get_all_measurements(docs, ’linear/x’)
self.assertEqual(measurements.shape, (149,))

Robot Software Development Lifecycle 13 / 21

https://github.com/ropod-project/black-box-tools


Unit Testing

▶ As discussed in our first lecture of the course, testing is one of the essential elements of
(robot) software development

▶ A robot has many components though,
such that we are interested in whether
they all work correctly as individual units
before they can be integrated together

▶ Unit testing is a process of testing the
correctness of individual components
in a code base

▶ Most languages have standard libraries for
writing and executing unit tests, e.g.
unittest in Python

Example of a Python-based unit test for a library that interacts with data in a database. Taken
from https://github.com/ropod-project/black-box-tools

class TestDataUtils(unittest.TestCase):
@classmethod
def setUpClass(cls):

cls.test_db_name = "bb_tools_test_data"
test_dir = os.path.abspath(os.path.dirname(__file__))
cls.test_db_dir = os.path.join(test_dir, cls.test_db_name)
cls.collection_name = ’ros_ropod_cmd_vel’

host, port = cls._get_db_host_and_port()
cls.client = pm.MongoClient(host=host, port=port)
success = cls._restore_test_db()
assert(success)

@classmethod
def tearDownClass(cls):

cls._drop_test_db()

def test_get_all_measurement(self):
database = self.client[self.test_db_name]
collection = database[self.collection_name]
doc_cursor = collection.find({})
docs = [doc for doc in doc_cursor]
measurements = DataUtils.get_all_measurements(docs, ’linear/x’)
self.assertEqual(measurements.shape, (149,))

Robot Software Development Lifecycle 13 / 21

https://github.com/ropod-project/black-box-tools


Unit Testing

▶ As discussed in our first lecture of the course, testing is one of the essential elements of
(robot) software development

▶ A robot has many components though,
such that we are interested in whether
they all work correctly as individual units
before they can be integrated together

▶ Unit testing is a process of testing the
correctness of individual components
in a code base

▶ Most languages have standard libraries for
writing and executing unit tests, e.g.
unittest in Python

Example of a Python-based unit test for a library that interacts with data in a database. Taken
from https://github.com/ropod-project/black-box-tools

class TestDataUtils(unittest.TestCase):
@classmethod
def setUpClass(cls):

cls.test_db_name = "bb_tools_test_data"
test_dir = os.path.abspath(os.path.dirname(__file__))
cls.test_db_dir = os.path.join(test_dir, cls.test_db_name)
cls.collection_name = ’ros_ropod_cmd_vel’

host, port = cls._get_db_host_and_port()
cls.client = pm.MongoClient(host=host, port=port)
success = cls._restore_test_db()
assert(success)

@classmethod
def tearDownClass(cls):

cls._drop_test_db()

def test_get_all_measurement(self):
database = self.client[self.test_db_name]
collection = database[self.collection_name]
doc_cursor = collection.find({})
docs = [doc for doc in doc_cursor]
measurements = DataUtils.get_all_measurements(docs, ’linear/x’)
self.assertEqual(measurements.shape, (149,))

Robot Software Development Lifecycle 13 / 21

https://github.com/ropod-project/black-box-tools


Unit Testing

▶ As discussed in our first lecture of the course, testing is one of the essential elements of
(robot) software development

▶ A robot has many components though,
such that we are interested in whether
they all work correctly as individual units
before they can be integrated together

▶ Unit testing is a process of testing the
correctness of individual components
in a code base

▶ Most languages have standard libraries for
writing and executing unit tests, e.g.
unittest in Python

Example of a Python-based unit test for a library that interacts with data in a database. Taken
from https://github.com/ropod-project/black-box-tools

class TestDataUtils(unittest.TestCase):
@classmethod
def setUpClass(cls):

cls.test_db_name = "bb_tools_test_data"
test_dir = os.path.abspath(os.path.dirname(__file__))
cls.test_db_dir = os.path.join(test_dir, cls.test_db_name)
cls.collection_name = ’ros_ropod_cmd_vel’

host, port = cls._get_db_host_and_port()
cls.client = pm.MongoClient(host=host, port=port)
success = cls._restore_test_db()
assert(success)

@classmethod
def tearDownClass(cls):

cls._drop_test_db()

def test_get_all_measurement(self):
database = self.client[self.test_db_name]
collection = database[self.collection_name]
doc_cursor = collection.find({})
docs = [doc for doc in doc_cursor]
measurements = DataUtils.get_all_measurements(docs, ’linear/x’)
self.assertEqual(measurements.shape, (149,))

Robot Software Development Lifecycle 13 / 21

https://github.com/ropod-project/black-box-tools


Continuous Integration and Unit Test Automation

▶ Source control is typically done in conjunction with automated tools that simplify the integration
and deployment process

An example of a continuous integration pipeline on GitHub. Taken from
https://github.com/ropod-project/black-box-tools

image: "mongo"
before_script:

- apt-get update
- apt-get install -y git-all
- apt-get install -y python3-pip
- pip3 install --upgrade pip
- cat requirements.txt | xargs -n 1 -L 1 pip3 install

variables:
DB_HOST: mongo

services:
- mongo

test:
script:

- python3 -m unittest discover -s ’test’ -p ’test_*.py’

▶ Continuous integration is one such
automated process, based on which changes
are merged into a target branch at a frequent
rate — in principle, multiple times a day

▶ Continuous integration pipelines are
typically automated and are associated with
automated tests — the code changes are
integrated into the target branch only if all
tests pass

▶ Additional steps, such as static code analysis tools, are often included in continuous integration
pipelines as well — this prevents low-quality code from being merged

Robot Software Development Lifecycle 14 / 21

https://github.com/ropod-project/black-box-tools


Continuous Integration and Unit Test Automation

▶ Source control is typically done in conjunction with automated tools that simplify the integration
and deployment process

An example of a continuous integration pipeline on GitHub. Taken from
https://github.com/ropod-project/black-box-tools

image: "mongo"
before_script:

- apt-get update
- apt-get install -y git-all
- apt-get install -y python3-pip
- pip3 install --upgrade pip
- cat requirements.txt | xargs -n 1 -L 1 pip3 install

variables:
DB_HOST: mongo

services:
- mongo

test:
script:

- python3 -m unittest discover -s ’test’ -p ’test_*.py’

▶ Continuous integration is one such
automated process, based on which changes
are merged into a target branch at a frequent
rate — in principle, multiple times a day

▶ Continuous integration pipelines are
typically automated and are associated with
automated tests — the code changes are
integrated into the target branch only if all
tests pass

▶ Additional steps, such as static code analysis tools, are often included in continuous integration
pipelines as well — this prevents low-quality code from being merged

Robot Software Development Lifecycle 14 / 21

https://github.com/ropod-project/black-box-tools


Continuous Integration and Unit Test Automation

▶ Source control is typically done in conjunction with automated tools that simplify the integration
and deployment process

An example of a continuous integration pipeline on GitHub. Taken from
https://github.com/ropod-project/black-box-tools

image: "mongo"
before_script:

- apt-get update
- apt-get install -y git-all
- apt-get install -y python3-pip
- pip3 install --upgrade pip
- cat requirements.txt | xargs -n 1 -L 1 pip3 install

variables:
DB_HOST: mongo

services:
- mongo

test:
script:

- python3 -m unittest discover -s ’test’ -p ’test_*.py’

▶ Continuous integration is one such
automated process, based on which changes
are merged into a target branch at a frequent
rate — in principle, multiple times a day

▶ Continuous integration pipelines are
typically automated and are associated with
automated tests — the code changes are
integrated into the target branch only if all
tests pass

▶ Additional steps, such as static code analysis tools, are often included in continuous integration
pipelines as well — this prevents low-quality code from being merged

Robot Software Development Lifecycle 14 / 21

https://github.com/ropod-project/black-box-tools


Continuous Integration and Unit Test Automation

▶ Source control is typically done in conjunction with automated tools that simplify the integration
and deployment process

An example of a continuous integration pipeline on GitHub. Taken from
https://github.com/ropod-project/black-box-tools

image: "mongo"
before_script:

- apt-get update
- apt-get install -y git-all
- apt-get install -y python3-pip
- pip3 install --upgrade pip
- cat requirements.txt | xargs -n 1 -L 1 pip3 install

variables:
DB_HOST: mongo

services:
- mongo

test:
script:

- python3 -m unittest discover -s ’test’ -p ’test_*.py’

▶ Continuous integration is one such
automated process, based on which changes
are merged into a target branch at a frequent
rate — in principle, multiple times a day

▶ Continuous integration pipelines are
typically automated and are associated with
automated tests — the code changes are
integrated into the target branch only if all
tests pass

▶ Additional steps, such as static code analysis tools, are often included in continuous integration
pipelines as well — this prevents low-quality code from being merged

Robot Software Development Lifecycle 14 / 21

https://github.com/ropod-project/black-box-tools


Hardware-in-the-Loop (HIL) Testing

▶ Robots are embodied agents, so pure software testing of a robot is never sufficient — real
testing has to be performed eventually

▶ HIL testing is a procedure based on which real signals are used to test the system in a
simulated environment

▶ This simplifies the process of testing with the real system since there is no need to expose it to
potentially hazardous situations

▶ The quality of HIL testing depends on the used simulation though — a high-fidelity
simulation is needed so that meaningful evaluation results are obtained

▶ Testing with the real system under real conditions is eventually unavoidable, but it is best if
this is only performed after software-based and HIL testing are both satisfactory

Robot Software Development Lifecycle 15 / 21



Hardware-in-the-Loop (HIL) Testing

▶ Robots are embodied agents, so pure software testing of a robot is never sufficient — real
testing has to be performed eventually

▶ HIL testing is a procedure based on which real signals are used to test the system in a
simulated environment

▶ This simplifies the process of testing with the real system since there is no need to expose it to
potentially hazardous situations

▶ The quality of HIL testing depends on the used simulation though — a high-fidelity
simulation is needed so that meaningful evaluation results are obtained

▶ Testing with the real system under real conditions is eventually unavoidable, but it is best if
this is only performed after software-based and HIL testing are both satisfactory

Robot Software Development Lifecycle 15 / 21



Hardware-in-the-Loop (HIL) Testing

▶ Robots are embodied agents, so pure software testing of a robot is never sufficient — real
testing has to be performed eventually

▶ HIL testing is a procedure based on which real signals are used to test the system in a
simulated environment

▶ This simplifies the process of testing with the real system since there is no need to expose it to
potentially hazardous situations

▶ The quality of HIL testing depends on the used simulation though — a high-fidelity
simulation is needed so that meaningful evaluation results are obtained

▶ Testing with the real system under real conditions is eventually unavoidable, but it is best if
this is only performed after software-based and HIL testing are both satisfactory

Robot Software Development Lifecycle 15 / 21



Hardware-in-the-Loop (HIL) Testing

▶ Robots are embodied agents, so pure software testing of a robot is never sufficient — real
testing has to be performed eventually

▶ HIL testing is a procedure based on which real signals are used to test the system in a
simulated environment

▶ This simplifies the process of testing with the real system since there is no need to expose it to
potentially hazardous situations

▶ The quality of HIL testing depends on the used simulation though — a high-fidelity
simulation is needed so that meaningful evaluation results are obtained

▶ Testing with the real system under real conditions is eventually unavoidable, but it is best if
this is only performed after software-based and HIL testing are both satisfactory

Robot Software Development Lifecycle 15 / 21



Fault Injection

Current measurements of a Robile-like platform with injected wheel
faults. Taken from A. Mitrevski and P. G. Plöger, “Data-Driven
Robot Fault Detection and Diagnosis Using Generative Models: A
Modified SFDD Algorithm,” in 30th Int. Workshop Principles of

Diagnosis (DX), 2019.

▶ Robots process complex sensor data to eventually
produce actuator output, but sensors, actuators, as
well as algorithms are all susceptible to faults

▶ Faults can be either intermittent, which appear
sporadically, or permanent, which persist for a prolonged
period of time

▶ It is thus usually of interest to know how a robot reacts
under noisy or faulty condition

▶ Fault injection is a procedure based on which faults are
induced at particular places in the software so that
the system’s resilience to failures can be examined

▶ Fault injection can also be used to verify the
correctness of fault management strategies, namely
fault detection, identification, and diagnosis

Robot Software Development Lifecycle 16 / 21



Fault Injection

Current measurements of a Robile-like platform with injected wheel
faults. Taken from A. Mitrevski and P. G. Plöger, “Data-Driven
Robot Fault Detection and Diagnosis Using Generative Models: A
Modified SFDD Algorithm,” in 30th Int. Workshop Principles of

Diagnosis (DX), 2019.

▶ Robots process complex sensor data to eventually
produce actuator output, but sensors, actuators, as
well as algorithms are all susceptible to faults

▶ Faults can be either intermittent, which appear
sporadically, or permanent, which persist for a prolonged
period of time

▶ It is thus usually of interest to know how a robot reacts
under noisy or faulty condition

▶ Fault injection is a procedure based on which faults are
induced at particular places in the software so that
the system’s resilience to failures can be examined

▶ Fault injection can also be used to verify the
correctness of fault management strategies, namely
fault detection, identification, and diagnosis

Robot Software Development Lifecycle 16 / 21



Fault Injection

Current measurements of a Robile-like platform with injected wheel
faults. Taken from A. Mitrevski and P. G. Plöger, “Data-Driven
Robot Fault Detection and Diagnosis Using Generative Models: A
Modified SFDD Algorithm,” in 30th Int. Workshop Principles of

Diagnosis (DX), 2019.

▶ Robots process complex sensor data to eventually
produce actuator output, but sensors, actuators, as
well as algorithms are all susceptible to faults

▶ Faults can be either intermittent, which appear
sporadically, or permanent, which persist for a prolonged
period of time

▶ It is thus usually of interest to know how a robot reacts
under noisy or faulty condition

▶ Fault injection is a procedure based on which faults are
induced at particular places in the software so that
the system’s resilience to failures can be examined

▶ Fault injection can also be used to verify the
correctness of fault management strategies, namely
fault detection, identification, and diagnosis

Robot Software Development Lifecycle 16 / 21



Fault Injection

Current measurements of a Robile-like platform with injected wheel
faults. Taken from A. Mitrevski and P. G. Plöger, “Data-Driven
Robot Fault Detection and Diagnosis Using Generative Models: A
Modified SFDD Algorithm,” in 30th Int. Workshop Principles of

Diagnosis (DX), 2019.

▶ Robots process complex sensor data to eventually
produce actuator output, but sensors, actuators, as
well as algorithms are all susceptible to faults

▶ Faults can be either intermittent, which appear
sporadically, or permanent, which persist for a prolonged
period of time

▶ It is thus usually of interest to know how a robot reacts
under noisy or faulty condition

▶ Fault injection is a procedure based on which faults are
induced at particular places in the software so that
the system’s resilience to failures can be examined

▶ Fault injection can also be used to verify the
correctness of fault management strategies, namely
fault detection, identification, and diagnosis

Robot Software Development Lifecycle 16 / 21



Essential elements of (robot)
software lifecycle management

Source
control

Continuous
integration and testing

Issue
management

Robot Software Development Lifecycle 17 / 21



Task Management Through Issues

▶ When working on a complex system such as a robot, there are typically many tasks that need to
be performed at any point in time — this creates the need for task management

A list of open issues from https://github.com/b-it-bots/mas domestic robotics/issues

▶ Task management and allocation is often
performed via issues

▶ An issue is a description of a concrete task
that can be assigned to a developer,
potentially with associated tags that help
identify the type of issue

▶ Issues are typically associated with individual
repositories, but can also be managed for a
complete project — this depends on the
development style that is followed by a team

Robot Software Development Lifecycle 18 / 21

https://github.com/b-it-bots/mas_domestic_robotics/issues


Task Management Through Issues

▶ When working on a complex system such as a robot, there are typically many tasks that need to
be performed at any point in time — this creates the need for task management

A list of open issues from https://github.com/b-it-bots/mas domestic robotics/issues

▶ Task management and allocation is often
performed via issues

▶ An issue is a description of a concrete task
that can be assigned to a developer,
potentially with associated tags that help
identify the type of issue

▶ Issues are typically associated with individual
repositories, but can also be managed for a
complete project — this depends on the
development style that is followed by a team

Robot Software Development Lifecycle 18 / 21

https://github.com/b-it-bots/mas_domestic_robotics/issues


Task Management Through Issues

▶ When working on a complex system such as a robot, there are typically many tasks that need to
be performed at any point in time — this creates the need for task management

A list of open issues from https://github.com/b-it-bots/mas domestic robotics/issues

▶ Task management and allocation is often
performed via issues

▶ An issue is a description of a concrete task
that can be assigned to a developer,
potentially with associated tags that help
identify the type of issue

▶ Issues are typically associated with individual
repositories, but can also be managed for a
complete project — this depends on the
development style that is followed by a team

Robot Software Development Lifecycle 18 / 21

https://github.com/b-it-bots/mas_domestic_robotics/issues


Task Management Through Issues

▶ When working on a complex system such as a robot, there are typically many tasks that need to
be performed at any point in time — this creates the need for task management

A list of open issues from https://github.com/b-it-bots/mas domestic robotics/issues

▶ Task management and allocation is often
performed via issues

▶ An issue is a description of a concrete task
that can be assigned to a developer,
potentially with associated tags that help
identify the type of issue

▶ Issues are typically associated with individual
repositories, but can also be managed for a
complete project — this depends on the
development style that is followed by a team

Robot Software Development Lifecycle 18 / 21

https://github.com/b-it-bots/mas_domestic_robotics/issues


Issue Best Practices

▶ Issues should describe a problem as precisely and should be as concrete as possible

▶ Although it may sometimes be desirable to organise issues hierarchically

An example issue describing a new feature (taken from
https://github.com/b-it-bots/mas knowledge base)

▶ Issue descriptions differ based on the purpose
for which they are created:

▶ Feature requests describe a feature that is
missing and that would be good to add

▶ Bug reports describe an observed problem
with the software, such that they should
include the steps to reproduce the bug and
typically a description of the hardware and
software configuration under which the
bug was observed

▶ Many open-source repositories have issue description templates — the details expected in the
template should all be filled out for the issue to be considered by the developers

Robot Software Development Lifecycle 19 / 21

https://github.com/b-it-bots/mas_knowledge_base


Issue Best Practices

▶ Issues should describe a problem as precisely and should be as concrete as possible

▶ Although it may sometimes be desirable to organise issues hierarchically

An example issue describing a new feature (taken from
https://github.com/b-it-bots/mas knowledge base)

▶ Issue descriptions differ based on the purpose
for which they are created:

▶ Feature requests describe a feature that is
missing and that would be good to add

▶ Bug reports describe an observed problem
with the software, such that they should
include the steps to reproduce the bug and
typically a description of the hardware and
software configuration under which the
bug was observed

▶ Many open-source repositories have issue description templates — the details expected in the
template should all be filled out for the issue to be considered by the developers

Robot Software Development Lifecycle 19 / 21

https://github.com/b-it-bots/mas_knowledge_base


Issue Best Practices

▶ Issues should describe a problem as precisely and should be as concrete as possible

▶ Although it may sometimes be desirable to organise issues hierarchically

An example issue describing a new feature (taken from
https://github.com/b-it-bots/mas knowledge base)

▶ Issue descriptions differ based on the purpose
for which they are created:

▶ Feature requests describe a feature that is
missing and that would be good to add

▶ Bug reports describe an observed problem
with the software, such that they should
include the steps to reproduce the bug and
typically a description of the hardware and
software configuration under which the
bug was observed

▶ Many open-source repositories have issue description templates — the details expected in the
template should all be filled out for the issue to be considered by the developers

Robot Software Development Lifecycle 19 / 21

https://github.com/b-it-bots/mas_knowledge_base


Issue Best Practices

▶ Issues should describe a problem as precisely and should be as concrete as possible

▶ Although it may sometimes be desirable to organise issues hierarchically

An example issue describing a new feature (taken from
https://github.com/b-it-bots/mas knowledge base)

▶ Issue descriptions differ based on the purpose
for which they are created:

▶ Feature requests describe a feature that is
missing and that would be good to add

▶ Bug reports describe an observed problem
with the software, such that they should
include the steps to reproduce the bug and
typically a description of the hardware and
software configuration under which the
bug was observed

▶ Many open-source repositories have issue description templates — the details expected in the
template should all be filled out for the issue to be considered by the developers

Robot Software Development Lifecycle 19 / 21

https://github.com/b-it-bots/mas_knowledge_base


Issue Best Practices

▶ Issues should describe a problem as precisely and should be as concrete as possible

▶ Although it may sometimes be desirable to organise issues hierarchically

An example issue describing a new feature (taken from
https://github.com/b-it-bots/mas knowledge base)

▶ Issue descriptions differ based on the purpose
for which they are created:

▶ Feature requests describe a feature that is
missing and that would be good to add

▶ Bug reports describe an observed problem
with the software, such that they should
include the steps to reproduce the bug and
typically a description of the hardware and
software configuration under which the
bug was observed

▶ Many open-source repositories have issue description templates — the details expected in the
template should all be filled out for the issue to be considered by the developers

Robot Software Development Lifecycle 19 / 21

https://github.com/b-it-bots/mas_knowledge_base


Issue Boards

An example of an issue board on GitHub

▶ Particularly in large(r) projects, issue
management can become a daunting task
— if there are many issues in a repository, it
can become challenging to track which issues
are open, in progress, done, or even abandoned

▶ Issue boards can simplify this process by
organising issues into different columns,
such as open, in progress, and
completed
▶ An issue board is a visual representation of

the product backlog in scrum, which we
discussed a few weeks ago

▶ Most major software management platforms,
such as GitHub and GitLab, provide an
integrated facility for creating issue boards

Robot Software Development Lifecycle 20 / 21



Issue Boards

An example of an issue board on GitHub

▶ Particularly in large(r) projects, issue
management can become a daunting task
— if there are many issues in a repository, it
can become challenging to track which issues
are open, in progress, done, or even abandoned

▶ Issue boards can simplify this process by
organising issues into different columns,
such as open, in progress, and
completed
▶ An issue board is a visual representation of

the product backlog in scrum, which we
discussed a few weeks ago

▶ Most major software management platforms,
such as GitHub and GitLab, provide an
integrated facility for creating issue boards

Robot Software Development Lifecycle 20 / 21



Issue Boards

An example of an issue board on GitHub

▶ Particularly in large(r) projects, issue
management can become a daunting task
— if there are many issues in a repository, it
can become challenging to track which issues
are open, in progress, done, or even abandoned

▶ Issue boards can simplify this process by
organising issues into different columns,
such as open, in progress, and
completed
▶ An issue board is a visual representation of

the product backlog in scrum, which we
discussed a few weeks ago

▶ Most major software management platforms,
such as GitHub and GitLab, provide an
integrated facility for creating issue boards

Robot Software Development Lifecycle 20 / 21



Essential elements
of (robot) software management

Source
control

Continuous
integration and testing

Issue
management

Robot Software Development Lifecycle 21 / 21


