
(Robot) Software Architectures
An Overview

Dr. Alex Mitrevski
Master of Autonomous Systems



Structure

▶ Software architecture fundamentals

▶ Robot architecture types

▶ System architecture modelling

(Robot) Software Architectures: An Overview 2 / 27



Software Architecture Fundamentals

(Robot) Software Architectures: An Overview 3 / 27



What is an Architecture?

▶ When working on a complex system such as a robot, it is important to understand the elements
of that system and the manner in which those interact with each other

▶ Without such an understanding, it is difficult to keep track of the system’s design and its evolution

▶ This understanding is typically captured by an architecture, which is a model that describes
how a system works and what it needs so that it can successfully perform its operation

▶ An architecture abstracts away various aspects of the system’s operation, such that it can
be defined at different levels of abstraction

An architecture is a description of a system, namely its design and operation, at a given level of
abstraction

(Robot) Software Architectures: An Overview 4 / 27



What is an Architecture?

▶ When working on a complex system such as a robot, it is important to understand the elements
of that system and the manner in which those interact with each other

▶ Without such an understanding, it is difficult to keep track of the system’s design and its evolution

▶ This understanding is typically captured by an architecture, which is a model that describes
how a system works and what it needs so that it can successfully perform its operation

▶ An architecture abstracts away various aspects of the system’s operation, such that it can
be defined at different levels of abstraction

An architecture is a description of a system, namely its design and operation, at a given level of
abstraction

(Robot) Software Architectures: An Overview 4 / 27



What is an Architecture?

▶ When working on a complex system such as a robot, it is important to understand the elements
of that system and the manner in which those interact with each other

▶ Without such an understanding, it is difficult to keep track of the system’s design and its evolution

▶ This understanding is typically captured by an architecture, which is a model that describes
how a system works and what it needs so that it can successfully perform its operation

▶ An architecture abstracts away various aspects of the system’s operation, such that it can
be defined at different levels of abstraction

An architecture is a description of a system, namely its design and operation, at a given level of
abstraction

(Robot) Software Architectures: An Overview 4 / 27



What is an Architecture?

▶ When working on a complex system such as a robot, it is important to understand the elements
of that system and the manner in which those interact with each other

▶ Without such an understanding, it is difficult to keep track of the system’s design and its evolution

▶ This understanding is typically captured by an architecture, which is a model that describes
how a system works and what it needs so that it can successfully perform its operation

▶ An architecture abstracts away various aspects of the system’s operation, such that it can
be defined at different levels of abstraction

An architecture is a description of a system, namely its design and operation, at a given level of
abstraction

(Robot) Software Architectures: An Overview 4 / 27



Architecture Abstraction Levels

Architectures can be observed at three different levels:

1. Operational architecture: Specifies what a system
should do without describing how

2. System architecture: Defines the components of a
system and their connections

3. Technical architecture: Describes how the system
actually works at an implementation level (down to
the algorithmic level)

Operational architecture

System architecture

Technical architecture

(Robot) Software Architectures: An Overview 5 / 27



Architecture Abstraction Levels

Architectures can be observed at three different levels:

1. Operational architecture: Specifies what a system
should do without describing how

2. System architecture: Defines the components of a
system and their connections

3. Technical architecture: Describes how the system
actually works at an implementation level (down to
the algorithmic level)

Operational architecture

System architecture

Technical architecture

(Robot) Software Architectures: An Overview 5 / 27



Architecture Abstraction Levels

Architectures can be observed at three different levels:

1. Operational architecture: Specifies what a system
should do without describing how

2. System architecture: Defines the components of a
system and their connections

3. Technical architecture: Describes how the system
actually works at an implementation level (down to
the algorithmic level)

Operational architecture

System architecture

Technical architecture

(Robot) Software Architectures: An Overview 5 / 27



Architecture Abstraction Levels

Architectures can be observed at three different levels:

1. Operational architecture: Specifies what a system
should do without describing how

2. System architecture: Defines the components of a
system and their connections

3. Technical architecture: Describes how the system
actually works at an implementation level (down to
the algorithmic level)

Operational architecture

System architecture

Technical architecture

(Robot) Software Architectures: An Overview 5 / 27



Architecture Abstraction Levels

Architectures can be observed at three different levels:

1. Operational architecture: Specifies what a system
should do without describing how

2. System architecture: Defines the components of a
system and their connections

3. Technical architecture: Describes how the system
actually works at an implementation level (down to
the algorithmic level)

Operational architecture

System architecture

Technical architecture

(Robot) Software Architectures: An Overview 5 / 27



What is a Software Architecture?

▶ When developing a software system, the first step (once
the system’s purpose is known) is to define how the
software should be organised

▶ The organisation of software in terms of components and
connections between those is captured by a software
architecture

▶ An architecture is a programming language-independent
representation of a system that captures the essence of
what a system should do and in which particular way

A software architecture is a system model that defines the components of a system and the manner in
which they are organised

(Robot) Software Architectures: An Overview 6 / 27



What is a Software Architecture?

▶ When developing a software system, the first step (once
the system’s purpose is known) is to define how the
software should be organised

▶ The organisation of software in terms of components and
connections between those is captured by a software
architecture

▶ An architecture is a programming language-independent
representation of a system that captures the essence of
what a system should do and in which particular way

A software architecture is a system model that defines the components of a system and the manner in
which they are organised

(Robot) Software Architectures: An Overview 6 / 27



What is a Software Architecture?

▶ When developing a software system, the first step (once
the system’s purpose is known) is to define how the
software should be organised

▶ The organisation of software in terms of components and
connections between those is captured by a software
architecture

▶ An architecture is a programming language-independent
representation of a system that captures the essence of
what a system should do and in which particular way

A software architecture is a system model that defines the components of a system and the manner in
which they are organised

(Robot) Software Architectures: An Overview 6 / 27



What is a Software Architecture?

▶ When developing a software system, the first step (once
the system’s purpose is known) is to define how the
software should be organised

▶ The organisation of software in terms of components and
connections between those is captured by a software
architecture

▶ An architecture is a programming language-independent
representation of a system that captures the essence of
what a system should do and in which particular way

A software architecture is a system model that defines the components of a system and the manner in
which they are organised

(Robot) Software Architectures: An Overview 6 / 27



Objectives of System Architectures

Common system understanding

A clear architectural representation enables all
developers to unambiguously understand how a
system works

Simplified modifiability

If the structure of a software architecture is
known, the problem of how to modify or extend
the system is considerably simplified

Fault identification
Knowledge of an architecture can help identify
potential system errors and means of mitigating
those

Simplified communication

An explicit representation of a software
architecture (e.g. in terms of a visual diagram)
can serve as a means of communication with
stakeholders

(Robot) Software Architectures: An Overview 7 / 27



Objectives of System Architectures

Common system understanding

A clear architectural representation enables all
developers to unambiguously understand how a
system works

Simplified modifiability

If the structure of a software architecture is
known, the problem of how to modify or extend
the system is considerably simplified

Fault identification
Knowledge of an architecture can help identify
potential system errors and means of mitigating
those

Simplified communication

An explicit representation of a software
architecture (e.g. in terms of a visual diagram)
can serve as a means of communication with
stakeholders

(Robot) Software Architectures: An Overview 7 / 27



Objectives of System Architectures

Common system understanding

A clear architectural representation enables all
developers to unambiguously understand how a
system works

Simplified modifiability

If the structure of a software architecture is
known, the problem of how to modify or extend
the system is considerably simplified

Fault identification
Knowledge of an architecture can help identify
potential system errors and means of mitigating
those

Simplified communication

An explicit representation of a software
architecture (e.g. in terms of a visual diagram)
can serve as a means of communication with
stakeholders

(Robot) Software Architectures: An Overview 7 / 27



Objectives of System Architectures

Common system understanding

A clear architectural representation enables all
developers to unambiguously understand how a
system works

Simplified modifiability

If the structure of a software architecture is
known, the problem of how to modify or extend
the system is considerably simplified

Fault identification
Knowledge of an architecture can help identify
potential system errors and means of mitigating
those

Simplified communication

An explicit representation of a software
architecture (e.g. in terms of a visual diagram)
can serve as a means of communication with
stakeholders

(Robot) Software Architectures: An Overview 7 / 27



General Properties of (Robot) Software Architectures

...

The architecture should be general

and abstract implementation details away

...

Components should be specialised

and as uncoupled as possible

...

Abstraction

...

Modularity

Incremental algorithmic

changes should be

supported without

major architectural changes

Change
anticipation

Architecture
properties

Portability

The architecture should be

reusable for other

similar applications

...

Niche targetability

...

Robustness

...

The architecture should work well

for the intended application

...

Components should be able to

handle faults and exceptions

(Robot) Software Architectures: An Overview 8 / 27



Robot Architecture Types

(Robot) Software Architectures: An Overview 9 / 27



Robot Architectures

▶ A robot is an embodied software system; thus, a robot architecture considers the interplay
between the hardware and software aspects of a robotic system

▶ A robot architecture is a commitment to a particular paradigm on how the behaviour of
an intelligent system should emerge

▶ Due to our limited understanding of intelligence, there is no universally accepted intelligence
paradigm, so there is a multitude of operational robot architectures in the literature

▶ The development of robot architectures is an evolving process, where insights from older
architectures are used to define new, improved architectures

(Robot) Software Architectures: An Overview 10 / 27



Robot Architectures

▶ A robot is an embodied software system; thus, a robot architecture considers the interplay
between the hardware and software aspects of a robotic system

▶ A robot architecture is a commitment to a particular paradigm on how the behaviour of
an intelligent system should emerge

▶ Due to our limited understanding of intelligence, there is no universally accepted intelligence
paradigm, so there is a multitude of operational robot architectures in the literature

▶ The development of robot architectures is an evolving process, where insights from older
architectures are used to define new, improved architectures

(Robot) Software Architectures: An Overview 10 / 27



Robot Architectures

▶ A robot is an embodied software system; thus, a robot architecture considers the interplay
between the hardware and software aspects of a robotic system

▶ A robot architecture is a commitment to a particular paradigm on how the behaviour of
an intelligent system should emerge

▶ Due to our limited understanding of intelligence, there is no universally accepted intelligence
paradigm, so there is a multitude of operational robot architectures in the literature

▶ The development of robot architectures is an evolving process, where insights from older
architectures are used to define new, improved architectures

(Robot) Software Architectures: An Overview 10 / 27



Sense-Plan-Act Paradigm

...

Plan

...

Sense

...

Act

▶ For a long period of time, the predominant paradigm
for developing robot software was based on the
sense-plan-act paradigm

▶ As the name suggests, sense-plan-act decouples the
processes of sensing the environment, generating
plans of actions, and action execution

▶ A robot based on the sense-plan-act paradigm
continuously performs deliberative processes

The sense-plan-act paradigm models a robot’s decision-making process as a continuous loop of
perceiving its environment (sensing), interpreting the information to create plans (planning), and

executing actions (acting)

(Robot) Software Architectures: An Overview 11 / 27



Sense-Plan-Act Paradigm

...

Plan

...

Sense

...

Act

▶ For a long period of time, the predominant paradigm
for developing robot software was based on the
sense-plan-act paradigm

▶ As the name suggests, sense-plan-act decouples the
processes of sensing the environment, generating
plans of actions, and action execution

▶ A robot based on the sense-plan-act paradigm
continuously performs deliberative processes

The sense-plan-act paradigm models a robot’s decision-making process as a continuous loop of
perceiving its environment (sensing), interpreting the information to create plans (planning), and

executing actions (acting)

(Robot) Software Architectures: An Overview 11 / 27



Sense-Plan-Act Paradigm

...

Plan

...

Sense

...

Act

▶ For a long period of time, the predominant paradigm
for developing robot software was based on the
sense-plan-act paradigm

▶ As the name suggests, sense-plan-act decouples the
processes of sensing the environment, generating
plans of actions, and action execution

▶ A robot based on the sense-plan-act paradigm
continuously performs deliberative processes

The sense-plan-act paradigm models a robot’s decision-making process as a continuous loop of
perceiving its environment (sensing), interpreting the information to create plans (planning), and

executing actions (acting)

(Robot) Software Architectures: An Overview 11 / 27



Sense-Plan-Act Paradigm

...

Plan

...

Sense

...

Act

▶ For a long period of time, the predominant paradigm
for developing robot software was based on the
sense-plan-act paradigm

▶ As the name suggests, sense-plan-act decouples the
processes of sensing the environment, generating
plans of actions, and action execution

▶ A robot based on the sense-plan-act paradigm
continuously performs deliberative processes

The sense-plan-act paradigm models a robot’s decision-making process as a continuous loop of
perceiving its environment (sensing), interpreting the information to create plans (planning), and

executing actions (acting)

(Robot) Software Architectures: An Overview 11 / 27



Behaviour-Based Architectures

Subsumption example

▶ In the sense-plan-act paradigm, the action execution
process is performed without taking sensor
information into account — problematic if quick
reactions are needed

▶ An alternative to deliberative architectures is a
reactive architecture, where the robot’s operation
is controlled by composing behaviours

▶ One famous example of such an architecture is the
subsumption architecture, where behaviours are
able to inhibit other behaviours based on an
arbitration mechanism

Behaviour-based architectures organise the operation of a robot into specialised behaviours that can be
composed to perform complex operations

(Robot) Software Architectures: An Overview 12 / 27



Behaviour-Based Architectures

Subsumption example

▶ In the sense-plan-act paradigm, the action execution
process is performed without taking sensor
information into account — problematic if quick
reactions are needed

▶ An alternative to deliberative architectures is a
reactive architecture, where the robot’s operation
is controlled by composing behaviours

▶ One famous example of such an architecture is the
subsumption architecture, where behaviours are
able to inhibit other behaviours based on an
arbitration mechanism

Behaviour-based architectures organise the operation of a robot into specialised behaviours that can be
composed to perform complex operations

(Robot) Software Architectures: An Overview 12 / 27



Behaviour-Based Architectures

Subsumption example

▶ In the sense-plan-act paradigm, the action execution
process is performed without taking sensor
information into account — problematic if quick
reactions are needed

▶ An alternative to deliberative architectures is a
reactive architecture, where the robot’s operation
is controlled by composing behaviours

▶ One famous example of such an architecture is the
subsumption architecture, where behaviours are
able to inhibit other behaviours based on an
arbitration mechanism

Behaviour-based architectures organise the operation of a robot into specialised behaviours that can be
composed to perform complex operations

(Robot) Software Architectures: An Overview 12 / 27



Behaviour-Based Architectures

Subsumption example

▶ In the sense-plan-act paradigm, the action execution
process is performed without taking sensor
information into account — problematic if quick
reactions are needed

▶ An alternative to deliberative architectures is a
reactive architecture, where the robot’s operation
is controlled by composing behaviours

▶ One famous example of such an architecture is the
subsumption architecture, where behaviours are
able to inhibit other behaviours based on an
arbitration mechanism

Behaviour-based architectures organise the operation of a robot into specialised behaviours that can be
composed to perform complex operations

(Robot) Software Architectures: An Overview 12 / 27



Three-Tier (3T) Architectures

▶ By missing a deliberation mechanism, behaviour-based
architectures are challenging to use for processes that require
foresight

▶ A common architecture in robotics that attempts to combine
the elements of both sense-plan-act and behaviour-based
architectures is the 3T architecture

▶ As the name implies, a 3T architecture has three hierarchically
arranged elements:

▶ Control: Includes reactive behaviours, performs perceptual
processing, and takes care of actuator commands

▶ Executive: Manages the execution of tasks

▶ Planning: Performs task planning based on all available
information

A 3T architecture hierarchically decomposes different robot operation into three layers that perform
planning, execution management, and environment interpretation and control

(Robot) Software Architectures: An Overview 13 / 27



Three-Tier (3T) Architectures

▶ By missing a deliberation mechanism, behaviour-based
architectures are challenging to use for processes that require
foresight

▶ A common architecture in robotics that attempts to combine
the elements of both sense-plan-act and behaviour-based
architectures is the 3T architecture

▶ As the name implies, a 3T architecture has three hierarchically
arranged elements:

▶ Control: Includes reactive behaviours, performs perceptual
processing, and takes care of actuator commands

▶ Executive: Manages the execution of tasks

▶ Planning: Performs task planning based on all available
information

A 3T architecture hierarchically decomposes different robot operation into three layers that perform
planning, execution management, and environment interpretation and control

(Robot) Software Architectures: An Overview 13 / 27



Three-Tier (3T) Architectures

▶ By missing a deliberation mechanism, behaviour-based
architectures are challenging to use for processes that require
foresight

▶ A common architecture in robotics that attempts to combine
the elements of both sense-plan-act and behaviour-based
architectures is the 3T architecture

▶ As the name implies, a 3T architecture has three hierarchically
arranged elements:

▶ Control: Includes reactive behaviours, performs perceptual
processing, and takes care of actuator commands

▶ Executive: Manages the execution of tasks

▶ Planning: Performs task planning based on all available
information

A 3T architecture hierarchically decomposes different robot operation into three layers that perform
planning, execution management, and environment interpretation and control

(Robot) Software Architectures: An Overview 13 / 27



Three-Tier (3T) Architectures

▶ By missing a deliberation mechanism, behaviour-based
architectures are challenging to use for processes that require
foresight

▶ A common architecture in robotics that attempts to combine
the elements of both sense-plan-act and behaviour-based
architectures is the 3T architecture

▶ As the name implies, a 3T architecture has three hierarchically
arranged elements:

▶ Control: Includes reactive behaviours, performs perceptual
processing, and takes care of actuator commands

▶ Executive: Manages the execution of tasks

▶ Planning: Performs task planning based on all available
information

A 3T architecture hierarchically decomposes different robot operation into three layers that perform
planning, execution management, and environment interpretation and control

(Robot) Software Architectures: An Overview 13 / 27



Three-Tier (3T) Architectures

▶ By missing a deliberation mechanism, behaviour-based
architectures are challenging to use for processes that require
foresight

▶ A common architecture in robotics that attempts to combine
the elements of both sense-plan-act and behaviour-based
architectures is the 3T architecture

▶ As the name implies, a 3T architecture has three hierarchically
arranged elements:

▶ Control: Includes reactive behaviours, performs perceptual
processing, and takes care of actuator commands

▶ Executive: Manages the execution of tasks

▶ Planning: Performs task planning based on all available
information

A 3T architecture hierarchically decomposes different robot operation into three layers that perform
planning, execution management, and environment interpretation and control

(Robot) Software Architectures: An Overview 13 / 27



Three-Tier (3T) Architectures

▶ By missing a deliberation mechanism, behaviour-based
architectures are challenging to use for processes that require
foresight

▶ A common architecture in robotics that attempts to combine
the elements of both sense-plan-act and behaviour-based
architectures is the 3T architecture

▶ As the name implies, a 3T architecture has three hierarchically
arranged elements:

▶ Control: Includes reactive behaviours, performs perceptual
processing, and takes care of actuator commands

▶ Executive: Manages the execution of tasks

▶ Planning: Performs task planning based on all available
information

A 3T architecture hierarchically decomposes different robot operation into three layers that perform
planning, execution management, and environment interpretation and control

(Robot) Software Architectures: An Overview 13 / 27



Three-Tier (3T) Architectures

▶ By missing a deliberation mechanism, behaviour-based
architectures are challenging to use for processes that require
foresight

▶ A common architecture in robotics that attempts to combine
the elements of both sense-plan-act and behaviour-based
architectures is the 3T architecture

▶ As the name implies, a 3T architecture has three hierarchically
arranged elements:

▶ Control: Includes reactive behaviours, performs perceptual
processing, and takes care of actuator commands

▶ Executive: Manages the execution of tasks

▶ Planning: Performs task planning based on all available
information

A 3T architecture hierarchically decomposes different robot operation into three layers that perform
planning, execution management, and environment interpretation and control

(Robot) Software Architectures: An Overview 13 / 27



Hybrid Interactive Architecture

▶ All previous architecture types are missing aspects
regarding interaction functionalities as well as
components to ensure the reliability of the
operation

▶ These aspects are essential to consider in a
contemporary robot architecture

▶ A prototypical example of such an architecture that
includes deliberative, reactive, as well as
interactive elements is illustrated on the left

(Robot) Software Architectures: An Overview 14 / 27



Hybrid Interactive Architecture

▶ All previous architecture types are missing aspects
regarding interaction functionalities as well as
components to ensure the reliability of the
operation

▶ These aspects are essential to consider in a
contemporary robot architecture

▶ A prototypical example of such an architecture that
includes deliberative, reactive, as well as
interactive elements is illustrated on the left

(Robot) Software Architectures: An Overview 14 / 27



Hybrid Interactive Architecture

▶ All previous architecture types are missing aspects
regarding interaction functionalities as well as
components to ensure the reliability of the
operation

▶ These aspects are essential to consider in a
contemporary robot architecture

▶ A prototypical example of such an architecture that
includes deliberative, reactive, as well as
interactive elements is illustrated on the left

(Robot) Software Architectures: An Overview 14 / 27



Cognitive Architectures

J. E. Laird, K. R. Kinkade, S. Mohan, and J. Z. Xu, “Cognitive Robotics
Using the Soar Cognitive Architecture,” in Cognitive Robotics Workshop
at the 26th AAAI Conf. Artificial Intelligence, 2012.

▶ Unlike typical agent architectures that are not
concerned with biological plausibility, some robot
architectures model aspects that are typical for
biological systems (e.g. long- and short-term memory)

▶ Such architectures are called cognitive architectures,
which are directly based on principles from natural
systems

▶ A variety of cognitive architectures exist, which
typically emphasise different aspects of
intelligence (e.g. affect or continual learning)

▶ Cognitive architectures are treated in more detail in my
“Cognitive Robotics” elective course

A cognitive architecture is a model inspired by natural intelligence or directly models aspects thereof

(Robot) Software Architectures: An Overview 15 / 27



Cognitive Architectures

J. E. Laird, K. R. Kinkade, S. Mohan, and J. Z. Xu, “Cognitive Robotics
Using the Soar Cognitive Architecture,” in Cognitive Robotics Workshop
at the 26th AAAI Conf. Artificial Intelligence, 2012.

▶ Unlike typical agent architectures that are not
concerned with biological plausibility, some robot
architectures model aspects that are typical for
biological systems (e.g. long- and short-term memory)

▶ Such architectures are called cognitive architectures,
which are directly based on principles from natural
systems

▶ A variety of cognitive architectures exist, which
typically emphasise different aspects of
intelligence (e.g. affect or continual learning)

▶ Cognitive architectures are treated in more detail in my
“Cognitive Robotics” elective course

A cognitive architecture is a model inspired by natural intelligence or directly models aspects thereof

(Robot) Software Architectures: An Overview 15 / 27



Cognitive Architectures

J. E. Laird, K. R. Kinkade, S. Mohan, and J. Z. Xu, “Cognitive Robotics
Using the Soar Cognitive Architecture,” in Cognitive Robotics Workshop
at the 26th AAAI Conf. Artificial Intelligence, 2012.

▶ Unlike typical agent architectures that are not
concerned with biological plausibility, some robot
architectures model aspects that are typical for
biological systems (e.g. long- and short-term memory)

▶ Such architectures are called cognitive architectures,
which are directly based on principles from natural
systems

▶ A variety of cognitive architectures exist, which
typically emphasise different aspects of
intelligence (e.g. affect or continual learning)

▶ Cognitive architectures are treated in more detail in my
“Cognitive Robotics” elective course

A cognitive architecture is a model inspired by natural intelligence or directly models aspects thereof

(Robot) Software Architectures: An Overview 15 / 27



Cognitive Architectures

J. E. Laird, K. R. Kinkade, S. Mohan, and J. Z. Xu, “Cognitive Robotics
Using the Soar Cognitive Architecture,” in Cognitive Robotics Workshop
at the 26th AAAI Conf. Artificial Intelligence, 2012.

▶ Unlike typical agent architectures that are not
concerned with biological plausibility, some robot
architectures model aspects that are typical for
biological systems (e.g. long- and short-term memory)

▶ Such architectures are called cognitive architectures,
which are directly based on principles from natural
systems

▶ A variety of cognitive architectures exist, which
typically emphasise different aspects of
intelligence (e.g. affect or continual learning)

▶ Cognitive architectures are treated in more detail in my
“Cognitive Robotics” elective course

A cognitive architecture is a model inspired by natural intelligence or directly models aspects thereof

(Robot) Software Architectures: An Overview 15 / 27



Cognitive Architectures

J. E. Laird, K. R. Kinkade, S. Mohan, and J. Z. Xu, “Cognitive Robotics
Using the Soar Cognitive Architecture,” in Cognitive Robotics Workshop
at the 26th AAAI Conf. Artificial Intelligence, 2012.

▶ Unlike typical agent architectures that are not
concerned with biological plausibility, some robot
architectures model aspects that are typical for
biological systems (e.g. long- and short-term memory)

▶ Such architectures are called cognitive architectures,
which are directly based on principles from natural
systems

▶ A variety of cognitive architectures exist, which
typically emphasise different aspects of
intelligence (e.g. affect or continual learning)

▶ Cognitive architectures are treated in more detail in my
“Cognitive Robotics” elective course

A cognitive architecture is a model inspired by natural intelligence or directly models aspects thereof

(Robot) Software Architectures: An Overview 15 / 27



Prototypical Robot System Architecture

At a system level, most robot architectures typically include
at least the following five components:

▶ Perception: Takes care of sensor data processing and
information extraction

▶ Navigation: Performs path planning and trajectory
execution

▶ Cartographer: Collects information about the
environment (maintains a world model)

▶ Planning: Generates high-level task plans and
monitors their execution

▶ Motor schema: Performs reactive selection of motor
action and takes care of their execution

(Robot) Software Architectures: An Overview 16 / 27



System Architecture Modelling

(Robot) Software Architectures: An Overview 17 / 27



Architectural Modelling Standards
Not all architectural models are equally useful

▶ Architectures are a useful abstraction concept, but it is usually useful to create architectural models
by following certain conventions that unambiguously communicate the intent behind
certain architectural decisions

▶ An architecture design created using non-standard notation can confuse rather than enlighten

▶ Architecture modelling paradigms and tools have evolved over many years of developing complex
systems; through these efforts, certain de facto discipline-agnostic modelling standards have
been accepted

▶ On the following few slides, we will take a closer look at one widely accepted modelling paradigm
— the Unified Modelling Language (UML)

(Robot) Software Architectures: An Overview 18 / 27



Architectural Modelling Standards
Not all architectural models are equally useful

▶ Architectures are a useful abstraction concept, but it is usually useful to create architectural models
by following certain conventions that unambiguously communicate the intent behind
certain architectural decisions

▶ An architecture design created using non-standard notation can confuse rather than enlighten

▶ Architecture modelling paradigms and tools have evolved over many years of developing complex
systems; through these efforts, certain de facto discipline-agnostic modelling standards have
been accepted

▶ On the following few slides, we will take a closer look at one widely accepted modelling paradigm
— the Unified Modelling Language (UML)

(Robot) Software Architectures: An Overview 18 / 27



Architectural Modelling Standards
Not all architectural models are equally useful

▶ Architectures are a useful abstraction concept, but it is usually useful to create architectural models
by following certain conventions that unambiguously communicate the intent behind
certain architectural decisions

▶ An architecture design created using non-standard notation can confuse rather than enlighten

▶ Architecture modelling paradigms and tools have evolved over many years of developing complex
systems; through these efforts, certain de facto discipline-agnostic modelling standards have
been accepted

▶ On the following few slides, we will take a closer look at one widely accepted modelling paradigm
— the Unified Modelling Language (UML)

(Robot) Software Architectures: An Overview 18 / 27



Unified Modelling Language (UML)

▶ The Unified Modelling Language (UML) is a standard visual representation of object-oriented
systems

▶ But aspects of UML can also be used to represent systems that are not based on object-oriented
programming

▶ UML includes different diagram types, each of which focuses on modelling a specific aspect of a
system and its interaction with the external world

▶ UML diagrams can be used for different purposes, such as idea brainstorming with stakeholders,
system documentation, but also for automatic code generation (in the context of model-driven
engineering)

(Robot) Software Architectures: An Overview 19 / 27



Unified Modelling Language (UML)

▶ The Unified Modelling Language (UML) is a standard visual representation of object-oriented
systems

▶ But aspects of UML can also be used to represent systems that are not based on object-oriented
programming

▶ UML includes different diagram types, each of which focuses on modelling a specific aspect of a
system and its interaction with the external world

▶ UML diagrams can be used for different purposes, such as idea brainstorming with stakeholders,
system documentation, but also for automatic code generation (in the context of model-driven
engineering)

(Robot) Software Architectures: An Overview 19 / 27



Unified Modelling Language (UML)

▶ The Unified Modelling Language (UML) is a standard visual representation of object-oriented
systems

▶ But aspects of UML can also be used to represent systems that are not based on object-oriented
programming

▶ UML includes different diagram types, each of which focuses on modelling a specific aspect of a
system and its interaction with the external world

▶ UML diagrams can be used for different purposes, such as idea brainstorming with stakeholders,
system documentation, but also for automatic code generation (in the context of model-driven
engineering)

(Robot) Software Architectures: An Overview 19 / 27



UML Diagram Types

...

Use case diagram Activity diagram Sequence diagram

...

UML diagram
types

...

...

Class diagram

...

State diagram

(Robot) Software Architectures: An Overview 20 / 27



Use Case Diagram

▶ A use case diagram is the simplest UML diagram type
that illustrates the interaction of a system and its
users at a high level of abstraction

▶ In a use case diagram:

▶ Stickmen represent actors in a system (this can be
people interacting with the system, or the system itself)

▶ Ellipses are processes through which interaction happens

▶ Use case diagrams can be useful during the requirement
elicitation process

(Robot) Software Architectures: An Overview 21 / 27



Use Case Diagram

▶ A use case diagram is the simplest UML diagram type
that illustrates the interaction of a system and its
users at a high level of abstraction

▶ In a use case diagram:

▶ Stickmen represent actors in a system (this can be
people interacting with the system, or the system itself)

▶ Ellipses are processes through which interaction happens

▶ Use case diagrams can be useful during the requirement
elicitation process

(Robot) Software Architectures: An Overview 21 / 27



Use Case Diagram

▶ A use case diagram is the simplest UML diagram type
that illustrates the interaction of a system and its
users at a high level of abstraction

▶ In a use case diagram:

▶ Stickmen represent actors in a system (this can be
people interacting with the system, or the system itself)

▶ Ellipses are processes through which interaction happens

▶ Use case diagrams can be useful during the requirement
elicitation process

(Robot) Software Architectures: An Overview 21 / 27



Use Case Diagram

▶ A use case diagram is the simplest UML diagram type
that illustrates the interaction of a system and its
users at a high level of abstraction

▶ In a use case diagram:

▶ Stickmen represent actors in a system (this can be
people interacting with the system, or the system itself)

▶ Ellipses are processes through which interaction happens

▶ Use case diagrams can be useful during the requirement
elicitation process

(Robot) Software Architectures: An Overview 21 / 27



Use Case Diagram

▶ A use case diagram is the simplest UML diagram type
that illustrates the interaction of a system and its
users at a high level of abstraction

▶ In a use case diagram:

▶ Stickmen represent actors in a system (this can be
people interacting with the system, or the system itself)

▶ Ellipses are processes through which interaction happens

▶ Use case diagrams can be useful during the requirement
elicitation process

(Robot) Software Architectures: An Overview 21 / 27



Activity Diagram

▶ The objective of an activity diagram is to show the flow
of activities in a certain process

▶ In such a diagram:

▶ A full circle represents the start of a process, while a full
circle inside a circle is the end of the process

▶ A round rectangle is an activity

▶ A diamond represents a decision node

▶ Arrows represent the direction of flow

▶ The Business Process Model and Notation (BPMN)
is a similar graphical representation that is sometimes
used instead of UML activity diagrams

(Robot) Software Architectures: An Overview 22 / 27



Activity Diagram

▶ The objective of an activity diagram is to show the flow
of activities in a certain process

▶ In such a diagram:

▶ A full circle represents the start of a process, while a full
circle inside a circle is the end of the process

▶ A round rectangle is an activity

▶ A diamond represents a decision node

▶ Arrows represent the direction of flow

▶ The Business Process Model and Notation (BPMN)
is a similar graphical representation that is sometimes
used instead of UML activity diagrams

(Robot) Software Architectures: An Overview 22 / 27



Activity Diagram

▶ The objective of an activity diagram is to show the flow
of activities in a certain process

▶ In such a diagram:

▶ A full circle represents the start of a process, while a full
circle inside a circle is the end of the process

▶ A round rectangle is an activity

▶ A diamond represents a decision node

▶ Arrows represent the direction of flow

▶ The Business Process Model and Notation (BPMN)
is a similar graphical representation that is sometimes
used instead of UML activity diagrams

(Robot) Software Architectures: An Overview 22 / 27



Activity Diagram

▶ The objective of an activity diagram is to show the flow
of activities in a certain process

▶ In such a diagram:

▶ A full circle represents the start of a process, while a full
circle inside a circle is the end of the process

▶ A round rectangle is an activity

▶ A diamond represents a decision node

▶ Arrows represent the direction of flow

▶ The Business Process Model and Notation (BPMN)
is a similar graphical representation that is sometimes
used instead of UML activity diagrams

(Robot) Software Architectures: An Overview 22 / 27



Activity Diagram

▶ The objective of an activity diagram is to show the flow
of activities in a certain process

▶ In such a diagram:

▶ A full circle represents the start of a process, while a full
circle inside a circle is the end of the process

▶ A round rectangle is an activity

▶ A diamond represents a decision node

▶ Arrows represent the direction of flow

▶ The Business Process Model and Notation (BPMN)
is a similar graphical representation that is sometimes
used instead of UML activity diagrams

(Robot) Software Architectures: An Overview 22 / 27



Activity Diagram

▶ The objective of an activity diagram is to show the flow
of activities in a certain process

▶ In such a diagram:

▶ A full circle represents the start of a process, while a full
circle inside a circle is the end of the process

▶ A round rectangle is an activity

▶ A diamond represents a decision node

▶ Arrows represent the direction of flow

▶ The Business Process Model and Notation (BPMN)
is a similar graphical representation that is sometimes
used instead of UML activity diagrams

(Robot) Software Architectures: An Overview 22 / 27



Activity Diagram

▶ The objective of an activity diagram is to show the flow
of activities in a certain process

▶ In such a diagram:

▶ A full circle represents the start of a process, while a full
circle inside a circle is the end of the process

▶ A round rectangle is an activity

▶ A diamond represents a decision node

▶ Arrows represent the direction of flow

▶ The Business Process Model and Notation (BPMN)
is a similar graphical representation that is sometimes
used instead of UML activity diagrams

(Robot) Software Architectures: An Overview 22 / 27



Class Diagram

Class diagram illustrating associations between classes

Class diagram representing generalisation relations between classes

▶ The purpose of a class diagram is to show the relation
between different system components, which are
modelled as classes that interact with each other

▶ A class diagram can be used to create a visual
representation of a system architecture, such that it
represents a system that is to be developed using
object-oriented programming

▶ A class diagram hides the implementation details of
classes, but includes details about how exactly
classes are related to each other

(Robot) Software Architectures: An Overview 23 / 27



Class Diagram

Class diagram illustrating associations between classes

Class diagram representing generalisation relations between classes

▶ The purpose of a class diagram is to show the relation
between different system components, which are
modelled as classes that interact with each other

▶ A class diagram can be used to create a visual
representation of a system architecture, such that it
represents a system that is to be developed using
object-oriented programming

▶ A class diagram hides the implementation details of
classes, but includes details about how exactly
classes are related to each other

(Robot) Software Architectures: An Overview 23 / 27



Class Diagram

Class diagram illustrating associations between classes

Class diagram representing generalisation relations between classes

▶ The purpose of a class diagram is to show the relation
between different system components, which are
modelled as classes that interact with each other

▶ A class diagram can be used to create a visual
representation of a system architecture, such that it
represents a system that is to be developed using
object-oriented programming

▶ A class diagram hides the implementation details of
classes, but includes details about how exactly
classes are related to each other

(Robot) Software Architectures: An Overview 23 / 27



Class Diagram Relation Types

▶ UML class diagrams allow showing different types of relations between classes through various
relation types

▶ Relationships between classes can also have explicit cardinalities (as illustrated on the previous slide)

Relation types
Cardinality types

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/

(Robot) Software Architectures: An Overview 24 / 27

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/


Sequence Diagram

▶ To model concrete data flow in a system, sequence
diagrams can be used

▶ Sequence diagrams represent how messages are passed
between components so that a certain operation can
be completed

▶ Typically, sequence diagrams illustrate a complete
interaction that is initiated by or involves a user

(Robot) Software Architectures: An Overview 25 / 27



Sequence Diagram

▶ To model concrete data flow in a system, sequence
diagrams can be used

▶ Sequence diagrams represent how messages are passed
between components so that a certain operation can
be completed

▶ Typically, sequence diagrams illustrate a complete
interaction that is initiated by or involves a user

(Robot) Software Architectures: An Overview 25 / 27



Sequence Diagram

▶ To model concrete data flow in a system, sequence
diagrams can be used

▶ Sequence diagrams represent how messages are passed
between components so that a certain operation can
be completed

▶ Typically, sequence diagrams illustrate a complete
interaction that is initiated by or involves a user

(Robot) Software Architectures: An Overview 25 / 27



State Diagram

▶ In robotics, we typically care about the current state of
the robot and the transitions as a result of the
robot’s actions; thus, behaviours are often represented
using state-based paradigms, such as state machines or
behaviour trees

▶ State diagrams can be particularly helpful in this context,
as they model a system through its possible states
and state transitions

▶ In a state diagram:

▶ Rounded rectangles represent states

▶ Arrow labels are events that trigger particular transitions

▶ Circles have the same semantics as in activity diagrams

(Robot) Software Architectures: An Overview 26 / 27



State Diagram

▶ In robotics, we typically care about the current state of
the robot and the transitions as a result of the
robot’s actions; thus, behaviours are often represented
using state-based paradigms, such as state machines or
behaviour trees

▶ State diagrams can be particularly helpful in this context,
as they model a system through its possible states
and state transitions

▶ In a state diagram:

▶ Rounded rectangles represent states

▶ Arrow labels are events that trigger particular transitions

▶ Circles have the same semantics as in activity diagrams

(Robot) Software Architectures: An Overview 26 / 27



State Diagram

▶ In robotics, we typically care about the current state of
the robot and the transitions as a result of the
robot’s actions; thus, behaviours are often represented
using state-based paradigms, such as state machines or
behaviour trees

▶ State diagrams can be particularly helpful in this context,
as they model a system through its possible states
and state transitions

▶ In a state diagram:

▶ Rounded rectangles represent states

▶ Arrow labels are events that trigger particular transitions

▶ Circles have the same semantics as in activity diagrams

(Robot) Software Architectures: An Overview 26 / 27



State Diagram

▶ In robotics, we typically care about the current state of
the robot and the transitions as a result of the
robot’s actions; thus, behaviours are often represented
using state-based paradigms, such as state machines or
behaviour trees

▶ State diagrams can be particularly helpful in this context,
as they model a system through its possible states
and state transitions

▶ In a state diagram:

▶ Rounded rectangles represent states

▶ Arrow labels are events that trigger particular transitions

▶ Circles have the same semantics as in activity diagrams

(Robot) Software Architectures: An Overview 26 / 27



State Diagram

▶ In robotics, we typically care about the current state of
the robot and the transitions as a result of the
robot’s actions; thus, behaviours are often represented
using state-based paradigms, such as state machines or
behaviour trees

▶ State diagrams can be particularly helpful in this context,
as they model a system through its possible states
and state transitions

▶ In a state diagram:

▶ Rounded rectangles represent states

▶ Arrow labels are events that trigger particular transitions

▶ Circles have the same semantics as in activity diagrams

(Robot) Software Architectures: An Overview 26 / 27



State Diagram

▶ In robotics, we typically care about the current state of
the robot and the transitions as a result of the
robot’s actions; thus, behaviours are often represented
using state-based paradigms, such as state machines or
behaviour trees

▶ State diagrams can be particularly helpful in this context,
as they model a system through its possible states
and state transitions

▶ In a state diagram:

▶ Rounded rectangles represent states

▶ Arrow labels are events that trigger particular transitions

▶ Circles have the same semantics as in activity diagrams

(Robot) Software Architectures: An Overview 26 / 27



Summary

▶ Architectures represent an abstraction of the design and operation of a system, and can be done at
different abstraction levels

▶ Software architectures model the component design of a system as well as the interaction between
system components

▶ There are various operational architectures used in robotics, such as sense-plan-act,
behaviour-based, three-tier, hybrid, and cognitive architectures

▶ UML is a de facto standard notation for system and component modelling, which includes multiple
diagram types, such as use case, activity, class, sequence, and state diagrams

(Robot) Software Architectures: An Overview 27 / 27


