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What is Sim-to-Real?

» In many learning scenarios in robotics, collecting real-world
for learning data can be impractical or dangerous

J. P. R. Belo and R. A. F. Romero, “A Social
Human-Robot Interaction Simulator for Reinforcement
Learning Systems,” in Proc. 20th Int. Conf. Advanced

Robotics (ICAR), 2021, pp. 350-355.

A. H. Qureshi et al., “Robot gains social intelligence
through multimodal deep reinforcement learning,” in Proc.
IEEE-RAS 16th Int. Conf. Humanoid Robots
(Humanoids), 2016, pp. 745-751.
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for learning data can be impractical or dangerous

» For this reason, data collection for learning is often done in a
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» Sim-to-real transfer is the problem of adapting a
simulation-based model to the real world

Sim-to-real transfer is the process of making a model that was
trained in a simulated environment suitable for use in the real,
target environment

A. H. Qureshi et al., “Robot gains social intelligence
through multimodal deep reinforcement learning,” in Proc.
IEEE-RAS 16th Int. Conf. Humanoid Robots
(Humanoids), 2016, pp. 745-751.
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Cr&siing the Reality Gap: A Survey on
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» A simulation is never a completely faithful model, but merely
an approximation of physical entities and phenomena

» For instance, object are often modelled as meshes, so object

interactions are expressed on the mesh elements
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» A simulation is never a completely faithful model, but merely
an approximation of physical entities and phenomena

» For instance, object are often modelled as meshes, so object
interactions are expressed on the mesh elements

» Physical phenomena are expressed through (partial) differential
equation models

» As a result, a model learned in simulation may not be
directly usable in the real environment

» The reality gap refers to the difference in performance when

a model learned in simulation is applied in the real world
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» A simulation is never a completely faithful model, but merely
an approximation of physical entities and phenomena

e » For instance, object are often modelled as meshes, so object
| interactions are expressed on the mesh elements
NO Test in simulation - . _ » Physical phenomena are expressed through (partial) differential
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NoRG RG » Sim-to-real is thus the problem of reducing this gap so that
models acquired in simulation can be transferred to the
corresponding real system with reasonable accuracy

directly usable in the real environment
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Sim-to-Real Challenge Cases

Models trained in simulation (e.g. for object
recognition) may overfit on artificially looking
objects
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Policies learned in simulation can be affected
both by perceptual inaccuracies and by
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Sim-to-Real Challenge Cases

Perceptual models

Models trained in simulation (e.g. for object
recognition) may overfit on artificially looking
objects

Policies

Policies learned in simulation can be affected
both by perceptual inaccuracies and by
inappropriate contact models
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Object interaction

Simulated contacts may be inaccurate for
learning accurate interaction models that
translate well to real-world interactions

Human-robot interaction

Simulated human models may not be able to
capture important intricacies of how
human-robot interaction is performed
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Typical Sim-to-Real Workfklow
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Robotic Manipulation Tasks

Simulation Errors Without Object Interaction

» In an evaluation experiment of multiple commonly used simulations with ground-truth motion
capture data, it has been demonstrated that, with free joint motion, physics engines such as
Bullet can produce position errors, but most can follow the arm’s motion accurately
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» Errors are particularly visible when the joint goal orientation changes significantly — some
physics engines are too slow in correcting the error

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Instiute for Al and
j‘“‘“’ us Systems Sim-to-Real Transfer: Making Simulation-Based Knowledge Useful in Reality 9 /27



Simulation Errors Without Object Interaction

.

» In an evaluation experiment of multiple commonly used simulations with ground-truth motion
capture data, it has been demonstrated that, with free joint motion, physics engines such as
Bullet can produce position errors, but most can follow the arm’s motion accurately

» Errors are particularly visible when the joint goal orientation changes significantly — some
physics engines are too slow in correcting the error

» From this evaluation, it can also be seen that the error accumulates visibly for some physics
engines
O @ e

Instiute for Al and
University of Applied Sciences ’.'A““’ us Systems Sim-to-Real Transfer: Making Simulation-Based Knowledge Useful in Reality 9 /27




nd A
ads, Nay 20.24,2019
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> In the case of interactions with objects (in this case, pushing a simple cube without rotation), the
errors become even more prominent
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> In the case of interactions with objects (in this case, pushlng a S|mple cube without rotatlon) the
errors become even more prominent

» Here, it can be seen that, for some physics engines, such as Vortex or PyBullet, no or very little
interaction with the cube is performed, resulting in a large position error
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Robotic Manipulation Tasks
id Howard” and Jirgen Leitner'*
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> In the case of interactions with objects (in this case, pushing a simple cube without rotation), the
errors become even more prominent

» Here, it can be seen that, for some physics engines, such as Vortex or PyBullet, no or very little
interaction with the cube is performed, resulting in a large position error

> It can also be seen that the cube's position error is large for all engines, which means that none of
the simulators are able to accurately represent the actual cube interaction
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v Gap in Robotic Manipulation Tasks
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> In the case of interactions with objects (in this case, pushing a simple cube without rotation), the
errors become even more prominent

» Here, it can be seen that, for some physics engines, such as Vortex or PyBullet, no or very little
interaction with the cube is performed, resulting in a large position error

> It can also be seen that the cube's position error is large for all engines, which means that none of
the simulators are able to accurately represent the actual cube interaction

» This is visible for the rotational motion, where some engines are shown to lead to a large
orientation error due to knocking the cube
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» Sim-to-real is a particularly relevant problem when learning continuous robotics policies, namely
policies with continuous state and/or action spaces

» Here, the real system is governed by a

transition model f: S x A — S, an o)
observation model ¢ : S — O, and a reward S e
function h : S x A —= R  _ Z A= ()
041 awn|: a® at®
» The policy 7 is, however, learned in a 1:((("’“) :ji;(:”;J)
simulated environment E, which has an T e s (e,4) T e 2 (o0, 40)
= E' = §(E) =

approximate transition model f’,
observation model ¢’, and reward model 1’

> The transfer problem can be simplified by either improving the simulated model (typically
difficult) or designing and learning the policy so that model discrepancies are less
detrimental
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Sim-to-Real Methods
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Methods for Enabling Sim-to-Real Transfer
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Methods for Enabling Sim-to-Real Transfer

Domain
randomisation
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» In domain randomisation, the simulated environment is observed as
a corrupted model E’ with parameters £ and 1) governing the
disturbances of the transition and observation function, respectively
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obtained by varying £ and ¥
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In domain randomisation, the simulated environment is observed as
a corrupted model E’ with parameters £ and 1) governing the
disturbances of the transition and observation function, respectively

* is trained on a set of similar environments
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» In domain randomisation, the simulated environment is observed as
a corrupted model E’ with parameters £ and 1) governing the
disturbances of the transition and observation function, respectively

» The optimal policy 7 is trained on a set of similar environments
obtained by varying & and v

» The objective of this is to make 7" robust to parameter

perturbations — those will be observed when the policy is
transferred to the real world
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» In domain randomisation, the simulated environment is observed as
a corrupted model E’ with parameters £ and 1) governing the
disturbances of the transition and observation function, respectively

» The optimal policy 7 is trained on a set of similar environments
obtained by varying & and v

» The objective of this is to make 7" robust to parameter
perturbations — those will be observed when the policy is
transferred to the real world

» It can be useful to randomise a variety of parameters during this

process, e.g. physical or camera parameters — but overdoing
randomisation can be detrimental to the learning progress
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In domain randomisation, the simulated environment is observed as
a corrupted model E’ with parameters £ and 1) governing the
disturbances of the transition and observation function, respectively

The optimal policy 7™ is trained on a set of similar environments
obtained by varying & and v

The objective of this is to make 7" robust to parameter
perturbations — those will be observed when the policy is
transferred to the real world

It can be useful to randomise a variety of parameters during this
process, e.g. physical or camera parameters — but overdoing
randomisation can be detrimental to the learning progress

A randomisation-based learning process may result in a collection
of candidate policies from which 7 can be selected — for
instance, by evaluation over different simulations
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Methods for Enabling Sim-to-Real Transfer

Adversarial
reinforcement learning
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> Adversarial learning also observes the simulated environment E’ as
a corrupted model of the real environment and trains a policy that
is robust to this corruption
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> Adversarial learning also observes the simulated environment E’ as
a corrupted model of the real environment and trains a policy that

is robust to this corruption
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Methods for Enabling Sim-to-Real Transfer

Transfer
learning
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» In transfer learning, the policy learned in simulation is not directly applied in the real environment, but is
used as an initialisation for a learning process in the real environment

» This initialisation should speed up the physical learning process
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» In transfer learning, the policy learned in simulation is not directly applied in the real environment, but is
used as an initialisation for a learning process in the real environment

» This initialisation should speed up the physical learning process

» The transfer can be done in two ways:
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» In transfer learning, the policy learned in simulation is not directly applied in the real environment, but is
used as an initialisation for a learning process in the real environment

» This initialisation should speed up the physical learning process

» The transfer can be done in two ways:

» in a single direction (the policy learned in E’ is used for subsequent real-world training)
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» In transfer learning, the policy learned in simulation is not directly applied in the real environment, but is
used as an initialisation for a learning process in the real environment

» This initialisation should speed up the physical learning process

» The transfer can be done in two ways:

» in a single direction (the policy learned in E’ is used for subsequent real-world training) or

» bidirectionally (information from the real environment E is also used to improve E’)
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» In transfer learning, the policy learned in simulation is not directly applied in the real environment, but is
used as an initialisation for a learning process in the real environment

» This initialisation should speed up the physical learning process

» The transfer can be done in two ways:

» in a single direction (the policy learned in E’ is used for subsequent real-world training) or

» bidirectionally (information from the real environment E is also used to improve E’)

» The transfer does not need to be done once, but can be performed iteratively
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Methods for Enabling Sim-to-Real Transfer
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Active Learning

Bayesian optimization
Optimize control policy (x|6)

cheay . expensive,
P automatic trade-off P
inaccurate accurate

A. Marco et al., “Virtual vs. real: Trading off simulations
and physical experiments in reinforcement learning with
Bayesian optimization,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2017, pp. 1557-1563.
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» Another strategy to perform sim-to-real transfer is to consider both
simulated and real experiences during learning

r

Institute for Al and
Autonomous Systems

Sim-to-Real Transfer: Making Simulation-Based Knowledge Useful in Reality

21 /27



Active Learning

» Another strategy to perform sim-to-real transfer is to consider both
simulated and real experiences during learning

» Collecting real experiences is, however, expensive — that is the
motivation for using simulation-based learning in the first place —
but active learning can be used for selecting informative experiences
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Optimize control policy (x|6)
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A. Marco et al., “Virtual vs. real: Trading off simulations
and physical experiments in reinforcement learning with
Bayesian optimization,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2017, pp. 1557-1563.
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(typically, by reducing the entropy), and
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Bayesian optimization
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» Another strategy to perform sim-to-real transfer is to consider both
simulated and real experiences during learning

» Collecting real experiences is, however, expensive — that is the
motivation for using simulation-based learning in the first place —
but active learning can be used for selecting informative experiences

» Active learning for solving the sim-to-real problem maintains a cost
model J(0) based on which

» informative experiences are selected for execution
(typically, by reducing the entropy), and

» a choice is made between experience collection in simulation
or on the real system
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Bayesian optimization
Optimize control policy (x|6)
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Another strategy to perform sim-to-real transfer is to consider both
simulated and real experiences during learning

Collecting real experiences is, however, expensive — that is the
motivation for using simulation-based learning in the first place —
but active learning can be used for selecting informative experiences

Active learning for solving the sim-to-real problem maintains a cost
model J(0) based on which

» informative experiences are selected for execution
(typically, by reducing the entropy), and

» a choice is made between experience collection in simulation
or on the real system

In Bayesian optimisation, this is achieved by modelling J(60) as a
combination of

> the cost estimate in simulation Jsin (6) and

> an estimate J...(6) of the cost error between the real
system and the simulation
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Methods for Enabling Sim-to-Real Transfer

Meta
learning
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Sim-to-Real Transfer in Deep Reinforcement
Learning for Robotics: a Survey

Meta Learning

— meta-learnin . .
9 Iearning/ada;gatation » Meta (reinforcement) learning can also be used to perform

sim-to-real transfer

Algorithm 3 MAML for Rei Learning

Require: p(7): distribution over tasks
Require: «, j3: step size hyperparameters
1: randomly initialize 6
2: while not done do
3:  Sample batch of tasks T; ~ p(T)
4: forall 7; do
5: Sample K trajectories D = {(x1, a1, ...xx)} using fo

n’7;

6: Evaluate Vo L7, (f5) using D and L7, in Equation 4

7 Compute adapted parameters with gradient descent:
8, = 60— aVoLr,(fo)

8: Sample tra_]ec[ones D; = {(x1,a1,..xm)} using fy;
inT;

9:  end for

10: Update 6 = 6 — BV S, £7:(fo;) using each D;
and L7; in Equation 4
11: end while

C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks”, in
Proc. 34th Int. Conf. Machine Learning, vol. 70, 2017,

pp. 1126-1135.
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Meta Learning

— meta-learning
6 ---- learning/adaptation

VL

VL',l ot 0;

Algorithm 3 MAML for R

Require: p(7): distribution over tasks
Require: a, ize hyperparameters
1: randomly initialize 6
2: while not done do
3:  Sample batch of tasks T; ~ p(T)
4: forall 7; do
5: Sample K trajectories D = {(x1, a1, ...xx)} using fo

Learning

n’7;

6: Evaluate Vo L7, (f5) using D and L7, in Equation 4

7 Compute adapted parameters with gradient descent:
8, = 60— aVoLr,(fo)

8: Sample trajectories D; = {(x1,a1,...xxr)} using fo;
inT;

9:  end for

10: Update 6 = 6 — BV S, £7:(fo;) using each D;
and L7; in Equation 4
11: end while

C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks” , in
Proc. 34th Int. Conf. Machine Learning, vol. 70, 2017,

pp. 1126-1135.
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» Meta (reinforcement) learning can also be used to perform

sim-to-real transfer

Sim-to-Real Transfer in Deep Reinforcement

Learning for Roboti

» The idea behind meta-learning is to train a model on a
distribution of tasks p(7") from which real tasks can be expected
to be sampled
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Sim-to-Real Transfer in Deep Reinforcement
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VL sim-to-real transfer
VL . . L .
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Y distribution of tasks p(7") from which real tasks can be expected
ICEY to be sampled
Algorithm 3 MAML for Rei Leaming » Such a policy can be trained in multiple ways, such as:
Require: p(7): distribution over tasks
Require: «, j3: step size hyperparameters . . .
1 mndomiy intalize » by including a memory model (e.g. using a recurrent neural
3:  Sample batch of tasks T; ~ p(T) network)

4 forall T; do
5: Sample K trajectories D = {(x1,a1,..xx)} using fo

7

6: Evaluate VL7, (fo) using D and L7, in Equation 4

7 Compute adapted parameters with gradient descent:
6. =0 — aVoLr,(fo)

8: Sample trajectories D; = {(x1, a1, ..xx)} using fo;
in7;

9:  end for

10:  Update 6 < 6 — BV . ) L7: (fo;) using each D;
and L7; in Equation 4
11: end while

C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks”, in
Proc. 34th Int. Conf. Machine Learning, vol. 70, 2017,
pp. 1126-1135.
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Meta Learning

— meta-learning

9 learning/adaptation » Meta (reinforcement) learning can also be used to perform
VL sim-to-real transfer
VL, . . L .
A\ 03 » The idea behind meta-learning is to train a model on a
distribution of tasks p(7") from which real tasks can be expected
ICEY to be sampled
Algorithm 3 MAML for Rei Leaming » Such a policy can be trained in multiple ways, such as:

Require: p(7): distribution over tasks
Require: «, j3: step size hyperparameters

1: randoniy iniialize » by including a memory model (e.g. using a recurrent neural
3. Sample batch of tasks 7; ~ p(T) network) or

4 forall T; do
5: Sample K trajectories D = {(x1,a1,..xx)} using fo

inT; ) I » by enabling policy parameter updates to incorporate data
6: Evaluate VL7, (fo) using D and L7, in Equation 4 X X X
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8: is:x%ple trajectories D; = {(x1,a,...xn)} using fo; (MAM I_) method)
9:  end for

10:  Update 6 < 6 — BV 3.7 ) £7:(foy) using each D;
and L7; in Equation 4

11: end while » Meta-learning is conceptually related to transfer learning, but uses
C. Finn, P. Abbeel, and S. Levine, "Model-Agnostic a different (meta-)learning objective that aims to optimise the
Meta-Learning for Fast Adaptation of Deep Networks”, in .
Proc. 34th Int. Conf. Machine Learning, vol. 70, 2017, hyperparameters of the learning process

pp. 1126-1135.
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Methods for Enabling Sim-to-Real Transfer

Adversarial
reinforcement learning
Domain Transfer
randomisation learning
Active Learning
learning Meta relational knowledge
learning
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Learning Relational Knowledge

A. Mitrevski et al., “Improving the reliability of
service robots in the presence of external faults
by learning action execution models,” in Proc.
IEEE Int. Conf. Robotics and Automation
(ICRA), 2017, pp. 4256-4263.
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» A sometimes forgotten sim-to-real strategy is that of acquiring
conceptual knowledge that is more robust to discrepancies between
the simulated and the real environment — for instance, in the form of
relational knowledge
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Learning Relational Knowledge

» A sometimes forgotten sim-to-real strategy is that of acquiring
conceptual knowledge that is more robust to discrepancies between
the simulated and the real environment — for instance, in the form of
relational knowledge

» Relational knowledge can concretely be used to

» abstract away brittle details about the environment (which may
otherwise be incorporated into learned policies)
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» abstract away brittle details about the environment (which may
otherwise be incorporated into learned policies) and instead

» represent information about invariances that should not change
between the simulation and the real world (e.g. how objects
should be positioned with respect to one another so that a task is
successfully completed)
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» A sometimes forgotten sim-to-real strategy is that of acquiring
conceptual knowledge that is more robust to discrepancies between
the simulated and the real environment — for instance, in the form of
relational knowledge

» Relational knowledge can concretely be used to

» abstract away brittle details about the environment (which may
otherwise be incorporated into learned policies) and instead

» represent information about invariances that should not change
between the simulation and the real world (e.g. how objects
should be positioned with respect to one another so that a task is
successfully completed)

» Learning relational knowledge does, however, require:

A. Mitrevski et al., “Improving the reliability of L
service rabots in the presence of external faults » a definition of symbols to learn or a procedure to extract new
by learning action execution models,” in Proc.

IEEE Int. Conf. Robotics and Automation SymbOIS

(ICRA). 201, pp. 4256-4263. » explicit state estimation for estimating the values of the symbols
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Adversarial
reinforcement learning
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randomisation learning
Active Learning
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learning
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Methods for Enabling Sim-to-Real Transfer
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Summary

» Sim-to-real transfer refers to the problem of using knowledge that was acquired in simulation in the
corresponding real-world environment

» The problem exists because of the reality gap, namely the inevitable discrepancy between simulated
and real environments, which stems from the fact that simulations are simplified models of real
environments

» There is a variety of methods that can be used for performing sim-to-real transfer — we
particularly looked at domain randomisation, adversarial learning, transfer learning, active learning,
meta-learning, as well as learning relational knowledge

» There is no clear winner among the existing sim-to-real methods in terms of quality and
applicability
» Which method is best to apply can depend on what is and is not known about the real environment
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