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▶ Safe learning preliminaries

▶ Safe learning methods
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Safe Learning Motivation

Safe Robot Learning: An Overview 3 / 23



Safety Preliminaries

Safety is “the state of being safe and protected from danger or harm, the state of not being dangerous”
(Oxford Dictionary)

▶ Safety is a property that defines whether a robot behaves in a manner that prevents it from
performing dangerous actions

▶ Safety is an essential property of robot behaviour — deploying unsafe robots is simply
irresponsible

▶ The meaning of safety is context-dependent, i.e. discussing safety only makes sense with
respect to concrete context-specific constraints

▶ An autonomous car can be safe if it obeys traffic rules, even when it drives at 100km/h

▶ Driving at such high speeds is clearly unsafe for a robot navigating in an indoor environment

▶ For learning-based robots, safety needs to be considered:

▶ To prevent damages during learning if data collection is performed on a physical robot

▶ During deployment so that learned models can be applied without the danger of performing
hazardous actions, particularly in the presence of humans
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System Model

▶ Let us consider a robot with state st that can apply actions at, potentially under the
influence of noise w, such that its operation is governed by a dynamical system of the form

st+1 = f (st,at,wt)

▶ The robot’s performance on a task is evaluated by an additive cost function J defined as

J(s0:T ,a1:T−1) = l(sT ) +

T−1∑
t=0

l (st,at)

▶ The robot’s operation needs to be performed under safety constraints, which are described by Nc

constraint functions ck (s,a,w) , 1 ≤ k ≤ Nc and can be of multiple types:

▶ State constraints: A subset of safe states Sc ⊆ S

▶ Input constraints: A subset of safe actions Ac ⊆ A

▶ Stability guarantees: Ensure that the robot’s operation is robust to small perturbations
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Safety Levels

There is no single notion of safety that is always applicable — safety is best observed at different levels

Safety levels

L1: Encouraged
safety

L2: Safety with
high probability

L3: Guaranteed
safety
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Safety Level 1: Encouraged Safety (Soft Constraints)

▶ The robot is encouraged (rather than enforced) to satisfy the safety constraints

▶ Can be achieved in multiple ways:

▶ Encouraging safety at every step along a trajectory by defining the constraints as

ck (s,a,w) ≤ ϵk, 1 ≤ k ≤ Nc

▶ Guaranteeing expected safety on a complete trajectory:

J = E

[
T−1∑
t=0

ck (st,at,wt)

]
≤ dk, 1 ≤ k ≤ Nc

▶ Adding a high cost to J(s0:T ,a1:T−1) for constraint violation

Safe Robot Learning: An Overview 7 / 23



Safety Level 1: Encouraged Safety (Soft Constraints)

▶ The robot is encouraged (rather than enforced) to satisfy the safety constraints

▶ Can be achieved in multiple ways:

▶ Encouraging safety at every step along a trajectory by defining the constraints as

ck (s,a,w) ≤ ϵk, 1 ≤ k ≤ Nc

▶ Guaranteeing expected safety on a complete trajectory:

J = E

[
T−1∑
t=0

ck (st,at,wt)

]
≤ dk, 1 ≤ k ≤ Nc

▶ Adding a high cost to J(s0:T ,a1:T−1) for constraint violation

Safe Robot Learning: An Overview 7 / 23



Safety Level 1: Encouraged Safety (Soft Constraints)

▶ The robot is encouraged (rather than enforced) to satisfy the safety constraints

▶ Can be achieved in multiple ways:

▶ Encouraging safety at every step along a trajectory by defining the constraints as

ck (s,a,w) ≤ ϵk, 1 ≤ k ≤ Nc

▶ Guaranteeing expected safety on a complete trajectory:

J = E

[
T−1∑
t=0

ck (st,at,wt)

]
≤ dk, 1 ≤ k ≤ Nc

▶ Adding a high cost to J(s0:T ,a1:T−1) for constraint violation

Safe Robot Learning: An Overview 7 / 23



Safety Level 1: Encouraged Safety (Soft Constraints)

▶ The robot is encouraged (rather than enforced) to satisfy the safety constraints

▶ Can be achieved in multiple ways:

▶ Encouraging safety at every step along a trajectory by defining the constraints as

ck (s,a,w) ≤ ϵk, 1 ≤ k ≤ Nc

▶ Guaranteeing expected safety on a complete trajectory:

J = E

[
T−1∑
t=0

ck (st,at,wt)

]
≤ dk, 1 ≤ k ≤ Nc

▶ Adding a high cost to J(s0:T ,a1:T−1) for constraint violation

Safe Robot Learning: An Overview 7 / 23



Safety Level 1: Encouraged Safety (Soft Constraints)

▶ The robot is encouraged (rather than enforced) to satisfy the safety constraints

▶ Can be achieved in multiple ways:

▶ Encouraging safety at every step along a trajectory by defining the constraints as

ck (s,a,w) ≤ ϵk, 1 ≤ k ≤ Nc

▶ Guaranteeing expected safety on a complete trajectory:

J = E

[
T−1∑
t=0

ck (st,at,wt)

]
≤ dk, 1 ≤ k ≤ Nc

▶ Adding a high cost to J(s0:T ,a1:T−1) for constraint violation

Safe Robot Learning: An Overview 7 / 23



Safety Level 2: Safety With High Probability

▶ In this case, safety is guaranteed with a given probability

▶ Can be specified as
P (ck (st,at,wt) ≤ 0) ≥ pk ∀t ∈ [0, T ]

▶ Here, pk is a probability threshold that defines the certainty level with which the constraint is
satisfied
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Safety Level 3: Guaranteed Safety

▶ At this level, the compliance with safety constraints is formally guaranteed

▶ Specified by hard constraints of the form

ck (st,at,wt) ≤ 0 ∀t ∈ [0, T ]
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System and Property Specification Formalisms

▶ For systems that are not learning-based,
there are many formal specification
frameworks that can be used to specify
dynamical systems and the (safety)
properties to be satisfied

▶ State transition diagrams, such as state
machines or Petri nets, are predominant
for modelling the operation of dynamical
systems

▶ For specifying properties about the
operation, temporal logic, such as linear
temporal logic, is often used
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Verification Approaches

▶ For systems that are not learning-based,
there are also various techniques that can
be used for formal verification with
respect to desired systems properties

▶ Model checking, particularly in
conjunction with temporal logic, is the
most commonly used verification
technique

▶ In addition to techniques for offline
verification, runtime monitoring is also
commonly used to verify the online
operation of a robot — this enables a
robot to trigger recovery behaviours or
mitigating actions
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Models, Safety, and Learning-Based Methods

▶ But then there is learning, where applying the widespread methods for formal specification and
verification is challenging

▶ In general, model-based techniques
operate within a well-defined safety
region, and operation outside that region
is unsafe

▶ Pure learning-based methods, on the
other hand, are more flexible in terms
of the valid operating region, but blur
the boundary between regions of safe
and unsafe operation

▶ The challenge is thus that of defining learning methods that preserve the flexibility and
generalisability of data-driven approaches, but which are also safe to apply during
exploration and deployment
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Safe Learning Methods
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Safe Learning Formalisation

▶ Formally, the safe learning problem is similar to that of a typical learning problem as discussed in
our previous lectures — but with one key difference

▶ The objective is to find an optimal policy, but by minimising J (s0:T ,a0:T−1) not only over the
dynamic model, but also over the safety constraints

▶ This is specified as follows:

Jπ∗
(s0) = min

π
J (s0:T ,a0:T−1) + l(ϵ)

subject to st+1 = f (st,at,wt)
at = π(st)
s0 = s0
safety constraints as defined

before for different safety levels

where ϵ is only used with soft constraints
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Safe Learning and Classical Control

▶ In safe learning, the dynamics model f is typically assumed to be composed of a known prior
model f and an uncertain component f̂ :

f (st,at,wt) = f (st,at,wt) + f̂ (st,at,wt)

▶ Approaches to safe learning are closely related to adaptive control and robust control; some
particularly use MDP extensions that are based on adaptive and robust control

▶ For instance, robust MDPs solve an optimisation problem over the policy and the dynamics
uncertainty:

Jπ∗
(s0) = min

π
max
f̂∈D

J (s0:T ,a0:T−1)

subject to the same conditions are before

where D defines an uncertainty set for f̂
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Safe Learning Problems
▶ Safe learning can focus on two main aspects:

▶ Policy learning, which is concerned with learning a policy with safety guarantees

▶ Learning safety filters, where the policy itself may not have safety guarantees, but where the outputs
are post-processed with respect to safety properties
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Safety Levels and Safe Learning Approaches

▶ The safe learning approaches that are used
in practice differ based on the safety level
that should be achieved:

▶ Soft constraint satisfaction can be achieved
using approaches such as safe exploration,
uncertainty-aware RL, or robust MDPs

▶ Probabilistic safety can be achieved using
safe model-based RL or safe learning of
dynamics models

▶ Hard constraint satisfaction can also be
achieved using safe dynamics model
learning, but also using safety verification

▶ Thus, the suitability of different approaches
is application-dependent, namely it depends
on the safety levels that are acceptable in a
given context
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Lipschitz Continuity

▶ One commonly used criterion when analysing learned models is Lipschitz continuity

▶ A real-valued function f is called Lipschitz continuous if there is a constant C such that

∥f(x2)− f(x1)∥ ≤ C∥x2 − x1∥

▶ Essentially, Lipschitz continuity defines a limit on the absolute value on the slope of f

▶ This is useful for robot models because it would mean that small input changes would not cause large
output changes

▶ The smallest C for which the above condition holds is referred to as the Lipschitz constant of f
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Lipschitz Continuity and Safe Learning

▶ The concept of Lipschitz continuity can be utilised for safe learning by learning a policy with a
desired Lipschitz constant

▶ There are a few ways in which this can be done:

▶ Enforcing a Lipschitz constant during training (requires a dedicated training procedure)

▶ Training a policy iteratively until a desired Lipschitz constant is achieved (requires a procedure for
estimating the constant)

▶ Estimating the Lipschitz constant is NP-hard in general1

▶ The policy class needs to be restricted so that the constant can be calculated — the method is not
applicable in general

▶ There are, however, procedures for computing upper bounds of the Lipschitz constant

1K. Scaman and A. Virmaux, “Lipschitz regularity of deep neural networks: analysis and efficient estimation”, in 32nd Conference on Neural Information Processing Systems (NeurIPS), 2018.
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Ergodicity and Safe Exploration

▶ A commonly desired property of MDPs is ergodicity: An MDP is ergodic if every state can be
reached from every other state given some policy

▶ But ergodicity is violated in terminal states (e.g. there is no recovery from breaking an egg during
manipulation) and in some unsafe states

▶ Ergodicity is a property that can be used to define safe exploration procedures: By enforcing
ergodicity on the model, the policy can be guaranteed to avoid unsafe states

▶ Finding whether there is such a safe, ergodic policy is also an NP-hard problem2

▶ In practice, this can only be guaranteed with a given probability

2T. M. Moldovan and P. Abbeel, “Safe Exploration in Markov Decision Processes”, in Proc. 29th Int. Conf. Machine Learning (ICML), 2012, pp. 1451–1458.
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Risk-Averse Reinforcement Learning

▶ Safe learning can also be performed by using an estimate of risk during learning

▶ The estimate can be used to encourage risk-averse robot behaviour

▶ This can be done with the help of a predictive model that calculates risk based on (i) the robot’s
state and (ii) a sequence of actions that would be applied in subsequent steps

▶ Estimates provided by f are useful for computing the risk

▶ If these are not available, a risk estimation model can be learned in a preliminary, unsafe learning
phase (e.g. done in simulation or using offline data)
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Discovering Distribution Shifts for Safe Operation

K. Aslansefat et al. “SafeML: Safety Monitoring of Machine
Learning Classifiers Through Statistical Difference Measures,” in Int.
Symp. Model-Based Safety and Assessment, 2020, pp. 197–211.

▶ When using trained models, distribution shift can occur,
which refers to a discrepancy between the training
and testing distributions

▶ Distribution shift is one reason why direct sim-to-real
transfer is usually not possible

▶ To ensure safe decisions based on trained models, it is
useful to compute an estimate of this shift

▶ This can be done by comparing the training distribution
with the distribution observed during online application,
for instance based on the cumulative distribution
functions of the two datasets

▶ An estimate of the online distribution requires online
samples to be collected — sufficient evidence should
be available before a model can be trusted
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Summary

▶ Safety is an essential property of robot behaviour and is expressed by safety constraints that need
to be satisfied throughout a robot’s operation

▶ Safety can be enforced during learning or on an already learned policy

▶ There are different levels of safety, defined based on how the constraint satisfaction is guaranteed:
safety based on soft constraints, probabilistic safety, and safety based on hard constraints

▶ Safe learning is based on a wide variety of methods, such as those enforcing Lipschitz continuity,
ergodicity of a policy, or risk minimisation
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