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Safety Preliminaries

Safety is “the state of being safe and protected from danger or harm, the state of not being dangerous”
(Oxford Dictionary)

» Safety is a property that defines whether a robot behaves in a manner that prevents it from
performing dangerous actions
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Safety Preliminaries

Safety is “the state of being safe and protected from danger or harm, the state of not being dangerous”
(Oxford Dictionary)

» Safety is a property that defines whether a robot behaves in a manner that prevents it from
performing dangerous actions

» Safety is an essential property of robot behaviour — deploying unsafe robots is simply
irresponsible

» The meaning of safety is context-dependent, i.e. discussing safety only makes sense with
respect to concrete context-specific constraints

» An autonomous car can be safe if it obeys traffic rules, even when it drives at 100km/h

» Driving at such high speeds is clearly unsafe for a robot navigating in an indoor environment
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Safety Preliminaries

Safety is “the state of being safe and protected from danger or harm, the state of not being dangerous”
(Oxford Dictionary)

» Safety is a property that defines whether a robot behaves in a manner that prevents it from
performing dangerous actions

» Safety is an essential property of robot behaviour — deploying unsafe robots is simply
irresponsible

» The meaning of safety is context-dependent, i.e. discussing safety only makes sense with
respect to concrete context-specific constraints

» An autonomous car can be safe if it obeys traffic rules, even when it drives at 100km/h

» Driving at such high speeds is clearly unsafe for a robot navigating in an indoor environment

» For learning-based robots, safety needs to be considered:
» To prevent damages during learning if data collection is performed on a physical robot
» During deployment so that learned models can be applied without the danger of performing
hazardous actions, particularly in the presence of humans
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System Model

» Let us consider a robot with state s; that can apply actions a;, potentially under the
influence of noise w, such that its operation is governed by a dynamical system of the form

St4+1 = f (St;at,wt)
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System Model

» Let us consider a robot with state s; that can apply actions a;, potentially under the
influence of noise w, such that its operation is governed by a dynamical system of the form

St4+1 = f (St;at,wt)

» The robot's performance on a task is evaluated by an additive cost function .J defined as
T-1

J(sor,a1.r—1) =l(s7) + [(s¢,ay)
pry
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System Model

» Let us consider a robot with state s; that can apply actions a;, potentially under the
influence of noise w, such that its operation is governed by a dynamical system of the form

St4+1 = f (St;at,wt)

» The robot's performance on a task is evaluated by an additive cost function .J defined as
T-1
J(so.r,arr—1) =1(s7) + > 1(st,a4)
t=0

» The robot’s operation needs to be performed under safety constraints, which are described by N,
constraint functions ¢ (s,a,w),1 <k < N, and can be of multiple types:

» State constraints: A subset of safe states S. C S
» Input constraints: A subset of safe actions A, C A
» Stability guarantees: Ensure that the robot’s operation is robust to small perturbations

o . Hochschule
Bonn-Rhein-Sieg

nstitute for Al and
University of Applied Sciences ’.'A“"’ us Systems Safe Robot Learning: An Overview 5/23




Safety Levels =S

There is no single notion of safety that is always applicable — safety is best observed at different levels
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Safety Level 1: Encouraged Safety (Soft Constraints)

> The robot is encouraged (rather than enforced) to satisfy the safety constraints
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Safety Level 1: Encouraged Safety (Soft Constraints)

> The robot is encouraged (rather than enforced) to satisfy the safety constraints

» Can be achieved in multiple ways:
» Encouraging safety at every step along a trajectory by defining the constraints as

Ck(S,a,w) SelmlngNc
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Safety Level 1: Encouraged Safety (Soft Constraints)

> The robot is encouraged (rather than enforced) to satisfy the safety constraints

» Can be achieved in multiple ways:
» Encouraging safety at every step along a trajectory by defining the constraints as

Ck(S,a,w) SelmlngNc

» Guaranteeing expected safety on a complete trajectory:
T—1
J=E {ch (st,at,wt)} <di, 1<k <N

t=0
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Safety Level 1: Encouraged Safety (Soft Constraints)

> The robot is encouraged (rather than enforced) to satisfy the safety constraints

» Can be achieved in multiple ways:
» Encouraging safety at every step along a trajectory by defining the constraints as

Ck(s7a7w) SelmlngNc

» Guaranteeing expected safety on a complete trajectory:
T—1
J=E {ch (st,at,wt)} <di, 1<k <N

t=0

» Adding a high cost to J(so.7, a1.7—1) for constraint violation
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Safety Level 2: Safety With High Probability

» In this case, safety is guaranteed with a given probability
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Safety Level 2: Safety With High Probability

» In this case, safety is guaranteed with a given probability

» Can be specified as

P (ci (8¢, a,wi) <0) > pi YVt € [0,T]
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Safety Level 2: Safety With High Probability

» In this case, safety is guaranteed with a given probability

» Can be specified as
P (Ck (St, at,'wt) < 0) > Pk YVt € [O,T]

» Here, p;. is a probability threshold that defines the certainty level with which the constraint is
satisfied
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Safety Level 3: Guaranteed Safety

» At this level, the compliance with safety constraints is formally guaranteed
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Safety Level 3: Guaranteed Safety

» At this level, the compliance with safety constraints is formally guaranteed
» Specified by hard constraints of the form

Ck (st,at,wt) <0Vte [07T]
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Safety Level 3: Guaranteed Safety =

» At this level, the compliance with safety constraints is formally guaranteed
» Specified by hard constraints of the form

ck (84, a,wy) <0Vt € [0,7T]

Soft constraints Probabilistic constraints Hard constraints
Safety level | Safety level Il Safety level lll

Possible No violations. No
minimal with high violations
violations probability
rd
\\

Distribution \pJ

of possible Path

paths the —— 1 traversed by ——

robot could the robot
traverse B
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Formal Specification and Verification of Autonomous Robotic
Systems: A Survey

System and Property Specification Formalisms -

» For systems that are not learning-based, Table 2. Summary of the Types of Formalisms Found in the Literature for Specifying the System
there are many formal specification and the Properties to Be Checked
. System Property
frameworks that can be used to specify Formatizm References ol References Toul
dynamical systems and the (safety) Set Based (31, (91, [117], 78], [179] 5 0
. e [1], [20], [18], [25], [36], [39], [40],
properties to be satisfied [a1], 48], 149, o1, T62], 66,
State-Transition || L0} [83], [8], [97], [98], [51], 33 0
[99], [104], [108], [110], [111],
.. . [115], [116], [129], [141], [146],
» State transition diagrams, such as state [74], (175) (192], (186]
. . . Logics 6 32
machines or Petri nets, are predominant (297, [36), 571, (551 [61), (62,
. . . [70]. [71], [83], [95], [97], [98],
for modelling the operation of dynamical Temporal Logic o |ltkim fod oy ol |2
111], [115], [116], [123], [129],
SyStemS [138], [141], [176], [174], [175]
Dynamic Logic || [113], [125] 2 [113], [125] 2
Other Logics [29], [64], [80], [164] 4 [64], [80], [164] 3
» For specifying properties about the Process Algebra || [6]. [123], [132] R [EED) !
. | | . h | Ontology [11], [129], [137], [166] 4 0
Operatlon, tempora 0gICc, such as linear Other 1571, 1551 (72 (1381, (1761 S H}}YO[]ZO], (8], 251, (0L [, To6L |

temporal logic, is often used
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Formal Specification and Verification of Autonomous Robotic
Systems: A Survey

Verification Approaches -
. Table 3. Summary of the Formal Verification Tools, and the Type of Tools, Identified in the Core Set
» For systems that are not learning-based, of 63 Papers Surveyed
there are also various techniques that can Type of Tool Tool References Total |_Type Total
be used for formal verification with i — :
respect to desired systems properties Oreai {97} [, [51] 3
SAL 89 1
Model Checkers | SPIN T174], [175], (501, [70], [176] 5 25
1 1 1 Beryl [138], [139] 2
> Mo_del gheck!ng, part|cularly_|n _ S — z
conjunction with temporal logic, is the Diinder (241, 091, 251, () z
t | d f t. Unspecified [40], [30], [104] 3
most commonly used verification Program Model AJPF [71], [55], [57], [176] 4 7
techniq ue Checkers MCMAS [114], [44], [129] 3
. Prov KeyMaera [125], [113) 2 5
corem Provers (£ — d
» In addition to techniques for offline Bio PEPA Tool Suite | [127] T
e . . . . . TmeNET [49] 1
verification, runtime monitoring is also o 1167 :
commonly used to verify the online e (el U 2
. . Others Alloy [29], [81] 2 14
operation of a robot — this enables a Evaluator ] i
. . ‘minisat [20] 1
robot to trigger recovery behaviours or NissionTab (VIPATS) | [132] T
HH H H RV-BIP [66] 1
mitigating actions Community Z Tools | (1171178, [179] 3
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Models, Safety, and Learning-Based Methods

» But then there is learning, where applying the widespread methods for formal specification and
verification is challenging
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Models, Safety, and Learning-Based Methods _

» But then there is learning, where applying the widespread methods for formal specification and
verification is challenging

» In general, model-based techniques
i . combined operate within a well-defined safety
Safe - . . -
region, and operation outside that region
is unsafe
Model
Only a small part of the world
accurately modeled (and is
E and what cannot be
accurately modeled (and is
Unsafe
Benefits Genmlinbleb:’zc:'zf’eievslilhin defined
Challenges

Safely and efficiently exploring the
unknowns

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Institute for Al and
Autonomous Systems

Safe Robot Learning: An Overview 12 /23



Models, Safety, and Learning-Based Methods

» But then there is learning, where applying the widespread methods for formal specification and

verification is challenging

Model-driven Data-dri Combined

Safe

el
Only a small part of the world
can be accurately model
‘There is aclear boundary
between wh

Unsafe

. . Generalizable and safe within defined
CIis boundaries

Safely and efficiently exploring the
unknowns

Challenges
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In general, model-based techniques
operate within a well-defined safety
region, and operation outside that region
is unsafe

Pure learning-based methods, on the
other hand, are more flexible in terms
of the valid operating region, but blur
the boundary between regions of safe
and unsafe operation
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Models, Safety, and Learning-Based Methods _

» But then there is learning, where applying the widespread methods for formal specification and
verification is challenging

» In general, model-based techniques
operate within a well-defined safety
region, and operation outside that region
is unsafe

Model-driven Data-dri Combined

Safe

Pure learning-based methods, on the
other hand, are more flexible in terms
oneal st e of the valid operating region, but blur
the boundary between regions of safe
and unsafe operation

Benefits.

iz — CE 7 unknowns

» The challenge is thus that of defining learning methods that preserve the flexibility and
generalisability of data-driven approaches, but which are also safe to apply during
exploration and deployment
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Safe Learning Methods
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Safe Learning Formalisation

» Formally, the safe learning problem is similar to that of a typical learning problem as discussed in
our previous lectures — but with one key difference

» The objective is to find an optimal policy, but by minimising J (so.7, ag.7—1) not only over the
dynamic model, but also over the safety constraints

» This is specified as follows:
J™ (80) = min J (so.r, ao:r-1) + I(€)
subject to 8,11 = f (8¢, a4, wy)
a; = 7T(St)
8o = §0

safety constraints as defined
before for different safety levels

where € is only used with soft constraints
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Safe Learning and Classical Control

» In safe learning, the dynamics model f is typically assumed to be composed of a known prior

model f and an uncertain component f:

f (8¢, a,wy) :?(Staatawt) +f(5t,at,wt)

» Approaches to safe learning are closely related to adaptive control and robust control; some

particularly use MDP extensions that are based on adaptive and robust control

» For instance, robust MDPs solve an optimisation problem over the policy and the dynamics

uncertainty:

Jﬂ—* (§0) = min max J (SO:Ty aOZT_l)
T  feD

subject to the same conditions are before

where D defines an uncertainty set for f
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Safe Learning Problems

> Safe learning can focus on two main aspects:

» Policy learning, which is concerned with learning a policy with safety guarantees

» Learning safety filters, where the policy itself may not have safety guarantees, but where the outputs
are post-processed with respect to safety properties

Safe learning controller
Computes inputs that —}

y SEemmmsmsmmmmmmEs~ s L Modifies inputs if they are
enable the robot to fulfill C{:ntrcl plicy) SHEy certlﬁcate snclitey perceived to be unsafe
i ; (Sections 3.1 and 3.2) (Section 3.3)
the task while respecting 1
safety constraints. T e e T T R Ss | Input

S Prior system model i Priorsystem model ;

i S

. A

3 Predefined safety constraints
.
I ) ST e —— H

| Data buffer and learning algorithm I
|

Updates the control policy and/or the safety filter
based on data generated by the environment

Robot operating environment
Observations P 9
Cost/reward | Dynamics N
Constraint values |uncertainty —._ 3.Safety Certified input
\ constraints ¢
2.TaskJ
Key components
/ (e.g., following E y. 2
a desired path) f _] Optional

1. System model f components
Q@ o A — —> Signals
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Safety Levels and Safe Learning Approaches

» The safe learning approaches that are used
in practice differ based on the safety level

Increasing safety that should be achieved:
- » Soft constraint satisfaction can be achieved
S: G . .
Hard conraint s R using approaches such as safe exploration,
(safety level Il uncertain dynamics (o, ion351) s .
Leaming adapie | Consnt s Secton uncertainty-aware RL, or robust MDPs
control econ 31 e
X Learning robust T . .
P'i;f.‘?(‘l;fn‘? i 1 M » Probabilistic safety can be achieved using
(safety level I Standard Safe model-based RL (Section 3.1.4) safe model-based RL or safe Iearning of
control
h at encourages safety and robustness i
Soft constraint “pproacies R;a::'e:p\olanonagdopnr‘v::aylion(dsectli’on;l'\) dynamlcs mOdeIS
satisfaction Risk-averse and uncertainty-aware RL (Section 3.2.2) . . .
(safety level ) e L e » Hard constraint satisfaction can also be
achieved using safe dynamics model
" . . e .
guarantees Standard RL learning, but also using safety verification
Increasing
reliance
dmamies dymamies o P naar = Cnorinear . dyaoown  ondata
" N ear ynamics . o .
dynamics  dynamics _ cynamics » Thus, the suitability of different approaches
Imperfect prior knowledge/model is application-dependent, namely it depends

on the safety levels that are acceptable in a
given context
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Lipschitz Continuity

» One commonly used criterion when analysing learned models is Lipschitz continuity
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Lipschitz Continuity

» One commonly used criterion when analysing learned models is Lipschitz continuity

» A real-valued function f is called Lipschitz continuous if there is a constant C such that

[f(z2) = f(z1)|| < Cllzg — a1
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Lipschitz Continuity

» One commonly used criterion when analysing learned models is Lipschitz continuity
» A real-valued function f is called Lipschitz continuous if there is a constant C' such that

[f(z2) = f(z1)|| < Cllzg — a1

» Essentially, Lipschitz continuity defines a limit on the absolute value on the slope of f

» This is useful for robot models because it would mean that small input changes would not cause large
output changes
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Lipschitz Continuity

» One commonly used criterion when analysing learned models is Lipschitz continuity
» A real-valued function f is called Lipschitz continuous if there is a constant C' such that

[f(z2) = f(z1)|| < Cllzg — a1

» Essentially, Lipschitz continuity defines a limit on the absolute value on the slope of f

» This is useful for robot models because it would mean that small input changes would not cause large
output changes

» The smallest C' for which the above condition holds is referred to as the Lipschitz constant of f

o ' Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

"'.

institute for Al and
5 Systems

Safe Robot Learning: An Overview 18 /23




Lipschitz Continuity and Safe Learning

» The concept of Lipschitz continuity can be utilised for safe learning by learning a policy with a
desired Lipschitz constant

1K. Scaman and A. Virmaux, “Lipschitz regularity of deep neural networks: analysis and efficient estimation”, in 32nd Conference on Neural Information Processing Systems (NeurlPS), 2018.
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Lipschitz Continuity and Safe Learning

» The concept of Lipschitz continuity can be utilised for safe learning by learning a policy with a
desired Lipschitz constant

» There are a few ways in which this can be done:
» Enforcing a Lipschitz constant during training (requires a dedicated training procedure)

» Training a policy iteratively until a desired Lipschitz constant is achieved (requires a procedure for
estimating the constant)

1K. Scaman and A. Virmaux, “Lipschitz regularity of deep neural networks: analysis and efficient estimation”, in 32nd Conference on Neural Information Processing Systems (NeurlPS), 2018.
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Lipschitz Continuity and Safe Learning

» The concept of Lipschitz continuity can be utilised for safe learning by learning a policy with a
desired Lipschitz constant

» There are a few ways in which this can be done:
» Enforcing a Lipschitz constant during training (requires a dedicated training procedure)
» Training a policy iteratively until a desired Lipschitz constant is achieved (requires a procedure for
estimating the constant)

» Estimating the Lipschitz constant is NP-hard in general®
» The policy class needs to be restricted so that the constant can be calculated — the method is not
applicable in general
» There are, however, procedures for computing upper bounds of the Lipschitz constant

1K. Scaman and A. Virmaux, “Lipschitz regularity of deep neural networks: analysis and efficient estimation”, in 32nd Conference on Neural Information Processing Systems (NeurlPS), 2018.

o ' Hochschule
Bonn-Rhein-Sieg Insttte for Aond
University of Applied Sciences s ystems Safe Robot Learning: An Overview 19 /23




Ergodicity and Safe Exploration

» A commonly desired property of MDPs is ergodicity: An MDP is ergodic if every state can be
reached from every other state given some policy

» But ergodicity is violated in terminal states (e.g. there is no recovery from breaking an egg during
manipulation) and in some unsafe states

2T, M. Moldovan and P. Abbeel, “Safe Exploration in Markov Decision Processes”, in Proc. 29th Int. Conf. Machine Learning (ICML), 2012, pp. 1451-1458.
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Ergodicity and Safe Exploration

» A commonly desired property of MDPs is ergodicity: An MDP is ergodic if every state can be
reached from every other state given some policy
» But ergodicity is violated in terminal states (e.g. there is no recovery from breaking an egg during
manipulation) and in some unsafe states

» Ergodicity is a property that can be used to define safe exploration procedures: By enforcing
ergodicity on the model, the policy can be guaranteed to avoid unsafe states

2T. M. Moldovan and P. Abbeel, “Safe Exploration in Markov Decision Processes”, in Proc. 29th Int. Conf. Machine Learning (ICML), 2012, pp. 1451-1458.
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Ergodicity and Safe Exploration

» A commonly desired property of MDPs is ergodicity: An MDP is ergodic if every state can be
reached from every other state given some policy

» But ergodicity is violated in terminal states (e.g. there is no recovery from breaking an egg during
manipulation) and in some unsafe states

» Ergodicity is a property that can be used to define safe exploration procedures: By enforcing
ergodicity on the model, the policy can be guaranteed to avoid unsafe states

» Finding whether there is such a safe, ergodic policy is also an NP-hard problem?
» In practice, this can only be guaranteed with a given probability

2T. M. Moldovan and P. Abbeel, “Safe Exploration in Markov Decision Processes”, in Proc. 29th Int. Conf. Machine Learning (ICML), 2012, pp. 1451-1458.
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Risk-Averse Reinforcement Learning

» Safe learning can also be performed by using an estimate of risk during learning
» The estimate can be used to encourage risk-averse robot behaviour
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Risk-Averse Reinforcement Learning

» Safe learning can also be performed by using an estimate of risk during learning
» The estimate can be used to encourage risk-averse robot behaviour

> This can be done with the help of a predictive model that calculates risk based on (i) the robot’s
state and (ii) a sequence of actions that would be applied in subsequent steps
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Risk-Averse Reinforcement Learning

» Safe learning can also be performed by using an estimate of risk during learning
» The estimate can be used to encourage risk-averse robot behaviour

> This can be done with the help of a predictive model that calculates risk based on (i) the robot’s
state and (ii) a sequence of actions that would be applied in subsequent steps

» Estimates provided by f are useful for computing the risk

» If these are not available, a risk estimation model can be learned in a preliminary, unsafe learning
phase (e.g. done in simulation or using offline data)
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Discovering Distribution Shifts for Safe Operation

R o> . » When using trained models, distribution shift can occur,

5 ‘ ‘ which refers to a discrepancy between the training
R S— (Q and testing distributions
i e » Distribution shift is one reason why direct sim-to-real

Running |

fvin transfer is usually not possible

Dataset cannot be
trusted, Collect More

Load Trained Classifier

Evaluate CDF and Other Generate Alarm
Statistical Parameters for
eachClass

NO, abitunder threshold

Comparing Cumulative

Distribution Functions and

Estimate the Accuracy hininws]

acceptable?
| Check the Difference
Expected || between True Accuracy and
Estimated Accuracy and

Use Alternative
System/Notify the
Human Agent

Confdence
@[ expactedcontidence levelas

Threshold

K. Aslansefat et al. “SafeML: Safety Monitoring of Machine
Learning Classifiers Through Statistical Difference Measures,” in Int.
Symp. Model-Based Safety and Assessment, 2020, pp. 197-211.
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Discovering Distribution Shifts for Safe Operation

Statistical Parameters for

|
1
1
1
1
1
1 Evaluate COF and Other
1
1
'
I

Running |

Syt 1y

Dataset cannot be
trusted, Collect More

Load Trained Classifier

Evaluate CDF and Other Generate Alarm
Statistical Parameters for
eachClass

NO, abitunder threshold

ing Cumulative
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» When using trained models, distribution shift can occur,

which refers to a discrepancy between the training

and testing distributions
» Distribution shift is one reason why direct sim-to-real

transfer is usually not possible

» To ensure safe decisions based on trained models, it is

useful to compute an estimate of this shift

Institute for Al and
Autonomous Systems

Safe Robot Learning: An Overview

22 /23



Discovering Distribution Shifts for Safe Operation
P < R . » When using trained models, distribution shift can occur,

: 5 which refers to a discrepancy between the training
Evaluate CDF and Other E i
‘Statistical Parameters for Evaluate the |
each Class Per'ordm::::rl:gdyl:es :

and testing distributions

» Distribution shift is one reason why direct sim-to-real
transfer is usually not possible

Running |

Syt 1y

Dataset cannot be
trusted, Collect More

» To ensure safe decisions based on trained models, it is
useful to compute an estimate of this shift

Load Trained Classifier

Evaluate CDF and Other Generate Alarm
Statistical Parameters for
eachClass

» This can be done by comparing the training distribution
with the distribution observed during online application,
for instance based on the cumulative distribution
functions of the two datasets
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Summary

» Safety is an essential property of robot behaviour and is expressed by safety constraints that need
to be satisfied throughout a robot's operation

» Safety can be enforced during learning or on an already learned policy

» There are different levels of safety, defined based on how the constraint satisfaction is guaranteed:
safety based on soft constraints, probabilistic safety, and safety based on hard constraints

» Safe learning is based on a wide variety of methods, such as those enforcing Lipschitz continuity,
ergodicity of a policy, or risk minimisation
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