
Learning from Demonstration
An Overview With a Focus on Trajectory Learning

Dr. Alex Mitrevski
Master of Autonomous Systems



Structure

▶ What is learning from demonstration?

▶ Learning from one demonstration: Dynamic motion primitives

▶ Learning from multiple demonstrations: Gaussian mixture models
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Learning from Demonstration Preliminaries
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What is Learning from Demonstration?

F. J. Abu-Dakka et al. “Solving peg-in-hole tasks by
human demonstration and exception strategies,” Industrial

Robot: An International Journal, vol. 41, no. 6, pp.
575–584, 2014.

T. Zhang et al., “Deep Imitation Learning for Complex
Manipulation Tasks from Virtual Reality Teleoperation,” in
Proc. IEEE Int. Conf. Robotics and Automation (ICRA),

2018, pp. 5628–5635

▶ Learning from demonstration is a technique based on which
a robot acquires data for learning by observing a human
demonstrator

▶ This can essentially be seen as a robot programming
technique without writing explicit programs — the
knowledge about the robot’s behaviour comes from the
demonstrations rather than through manually written code

▶ Demonstration-based learning can enable end users to teach
skills to a robot without expert knowledge in robotics

LfD: An Overview With a Focus on Trajectory Learning 4 / 30



What is Learning from Demonstration?

F. J. Abu-Dakka et al. “Solving peg-in-hole tasks by
human demonstration and exception strategies,” Industrial

Robot: An International Journal, vol. 41, no. 6, pp.
575–584, 2014.

T. Zhang et al., “Deep Imitation Learning for Complex
Manipulation Tasks from Virtual Reality Teleoperation,” in
Proc. IEEE Int. Conf. Robotics and Automation (ICRA),

2018, pp. 5628–5635

▶ Learning from demonstration is a technique based on which
a robot acquires data for learning by observing a human
demonstrator

▶ This can essentially be seen as a robot programming
technique without writing explicit programs — the
knowledge about the robot’s behaviour comes from the
demonstrations rather than through manually written code

▶ Demonstration-based learning can enable end users to teach
skills to a robot without expert knowledge in robotics

LfD: An Overview With a Focus on Trajectory Learning 4 / 30



What is Learning from Demonstration?

F. J. Abu-Dakka et al. “Solving peg-in-hole tasks by
human demonstration and exception strategies,” Industrial

Robot: An International Journal, vol. 41, no. 6, pp.
575–584, 2014.

T. Zhang et al., “Deep Imitation Learning for Complex
Manipulation Tasks from Virtual Reality Teleoperation,” in
Proc. IEEE Int. Conf. Robotics and Automation (ICRA),

2018, pp. 5628–5635

▶ Learning from demonstration is a technique based on which
a robot acquires data for learning by observing a human
demonstrator

▶ This can essentially be seen as a robot programming
technique without writing explicit programs — the
knowledge about the robot’s behaviour comes from the
demonstrations rather than through manually written code

▶ Demonstration-based learning can enable end users to teach
skills to a robot without expert knowledge in robotics

LfD: An Overview With a Focus on Trajectory Learning 4 / 30



Benefits of Learning from Demonstration

...

Demonstrations make it possible to

incorporate expert knowledge into

a robot’s behaviour

...

Learning algorithms require a good initialisation

for fast convergence; demonstrations can

provide that for subsequent learning

...

Using expert
knowledge

...

Initialisation for
autonomous learning

...

Benefits
of LfD

...

Correction based
on feedback

...

Fast skill
acquisition

...

Demonstrations can be a useful source of

corrective feedback if a robot acts incorrectly

...

Learning from demonstrations can enable a robot to

acquire new skills on the fly and quickly
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Demonstration Types

▶ When performing demonstration-based learning, an essential choice is the modality used for
performing and recording demonstrations

▶ There are three main types of demonstrations:

▶ Kinesthetic teaching: A robot is physically moved by the demonstrator and the robot’s internal
sensors are used to record the demonstration

▶ Teleoperation: The demonstrator controls the robot remotely (e.g. with a joystick or through a
virtual reality) and the demonstration is recorded using the robot’s internal sensors

▶ Passive observation: The demonstrator performs the task naturally and the robot observes the
demonstration using its external sensors
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Correspondence Problem

▶ When a robot observes demonstrations from an external perspective, there is a need to map the
actions of the demonstrator to the robot’s embodiment

▶ The mapping is mostly trivial if the embodiments are the same (but there is an ambiguity
regarding the mirroring of motions)

▶ If the embodiments differ, there is a correspondence problem — the robot needs to perform the
actions of the demonstrator considering its own embodiment

▶ Depending on the observed actions, there may be many possible mappings to solve the
correspondence problem, or no mapping at all

The correspondence problem is concerned with how observations of one embodiment can be mapped to
another — potentially different — embodiment
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Comparison of the Demonstration Types
Kinesthetic teaching

Advantages

▶ Demonstrations are quite simple to perform

▶ Learning is simplified — the correspondence problem
is eliminated

Disadvantages

▶ Not all robots have an interface that supports
kinesthetic teaching

▶ Primarily useful for manipulator motions

Teleoperation

Advantages

▶ More flexible demonstration interfaces

▶ Can be more easily extended to more robot
embodiments

Disadvantages

▶ The demonstration is not necessarily intuitive

▶ Specialised hardware may be necessary for
performing demonstrations

Passive observation

Advantages

▶ Simplest to perform for demonstrators

▶ Applicable to all types of robots

Disadvantages

▶ Challenging information extraction

▶ The learning is more complicated — the
correspondence problem needs to be solved
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What Can Be Learned from Demonstrations?

...

Execution policies

...

Demonstration-based
learning outcomes

...

Task models

...

Reward models
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Single Demonstration vs. Multiple Demonstrations

▶ One dilemma when using learning from demonstration is whether learning should be done from
one demonstration or from a collection of demonstrations

▶ A single demonstration puts little burden on the demonstrator, but:

▶ it may produce suboptimal behaviour (demonstrations are rarely perfect)

▶ a robot cannot generalise beyond the demonstration (that is, beyond any generalisation
capabilities provided by the underlying model representation)

▶ Multiple demonstrations introduce more variety, but:

▶ multiple demonstrators are typically required for sufficient diversity (one demonstrator is likely to
perform the same task in a similar way)

▶ it may not always be clear how to combine information from multiple demonstrations
(particularly if the demonstrations show seemingly contradictory behaviour)
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Segmentation of Demonstrations

▶ In the case of learning based on passive observations, demonstrations may contain sequences of
actions of interest

▶ In such cases, it is required to perform demonstration segmentation so that individual actions of
interest can be extracted and then learned

▶ This is particularly the case when learning full task models from demonstrations

▶ Changing contact interactions with objects represent one common criterion that is used for
segmenting observations

▶ NB: These are equivalent to the mode transitions that we discussed in the lecture on learning for
manipulation!
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Learning Trajectories from One Demonstration:
Dynamic Motion Primitives
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(Reminder) Homogeneous Second-Order Differential Equations

▶ Consider the general form of a homogeneous, second-order differential equation with
constant coefficients:

aÿ + bẏ + cy = 0

▶ The general solution to this equation is of the form

y(t) = c1e
k1t + c2e

k2t

where k1 and k2 are the zeros of the characteristic polynomial ak2 + bk + c = 0

▶ Depending on the nature of the zeros, we distinguish between three forms of the general solution:

Real and distinct roots k1 and k2
(overdamped system)

y(t) = c1e
k1t + c2e

k2t

Repeated roots k1 = k2 = k
(critically damped system)

y(t) = c1e
kt + c2te

kt

Complex roots k1/2 = λ± µi
(underdamped system)

y(t) = c1e
λt cos(µt) + c2e

λt sin(µt)
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(Reminder) Nonhomogenous Second-Order Differential Equations

▶ A nonhomogeneous second-order differential equation has the following general form:

ÿ + p(t)ẏ + g(t)y + f(t) = 0

where f(t) is an external forcing term

▶ The general solution of such an equation has the form

y(t) = yc(t) + yp(t)

where

▶ yc(t) is a complementary solution (the solution to the homogeneous equation) and

▶ yp(t) is a particular solution (a specific solution to the nonhomogeneous equation)
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(Reminder) Autonomous Differential Equation

▶ A dynamical system of equations that does not explicitly depend on the input variable is called an
autonomous system and has the form

dy

dt
= f(y(t))

▶ A non-autonomous system is one where the dependence on the input variable is explicit:

dy

dt
= f(y(t), t)

▶ If the independent variable of the system represents time, an autonomous system is also called
time-invariant
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Dynamic Motion Primitive (DMP) Idea

▶ In the DMP framework, a trajectory is modelled as a
second-order dynamical system with an external forcing
term

▶ The system is defined so that a desired goal can be reached

▶ The external forcing term imposes a given shape on the
overall trajectory

▶ Learning a trajectory from demonstration is achieved by
parameterising the forcing term and learning its
parameters based on a demonstration

An example trajectory and its reproduction using with a
learned DMP
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System Formulation
▶ Formally, a DMP is defined as

τ ÿ = α (β (g − y)− ẏ) + f

Here:

▶ y is the robot’s state (e.g. position)

▶ g is a desired goal

▶ f is a forcing term

▶ τ is a time constant (controls the trajectory’s speed)

▶ α and β are positive constants

▶ The system will converge to g if it is critically damped and f → 0

▶ Critical damping can be achieved by setting β = α/4

▶ This is often rewritten in a first-order form with z = τ ẏ and

τ ż = αz (βz(g − y)− z) + f
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Forcing Term

▶ The DMP forcing term is represented as a linear
combination of basis functions:

f(t) =

∑n
i=1 Ψi(t)wi∑n
i=1 Ψi(t)

▶ Each basis function is a Gaussian kernel of the form

Ψi(x) = exp

(
− 1

2σi
(x− ci)

2

)

▶ Learning a DMP amounts to learning the weights of
the forcing term
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Discrete Canonical System

▶ In the previous formulation, a DMP is a time-dependent system; this can be problematic if the
execution of multiple systems should be coupled

▶ The dependence on time is eliminated by introducing a first-order equation referred to as the
canonical system:

τ ẋ = −αxx

▶ The solution to this equation is a decaying exponential of the form ce−αxt/τ

▶ The forcing term is then rewritten in terms of the canonical system as

f(x) =

∑n
i=1 Ψi(x)wi∑x
i=1 Ψi(x)

x (g − y0)

▶ As x exponentially decays, the modulation by x ensures that f → 0

▶ The term g − y0 achieves spatial scaling depending on the initial distance to the goal
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τ ẋ = −αxx

▶ The solution to this equation is a decaying exponential of the form ce−αxt/τ

▶ The forcing term is then rewritten in terms of the canonical system as

f(x) =

∑n
i=1 Ψi(x)wi∑x
i=1 Ψi(x)

x (g − y0)

▶ As x exponentially decays, the modulation by x ensures that f → 0

▶ The term g − y0 achieves spatial scaling depending on the initial distance to the goal

LfD: An Overview With a Focus on Trajectory Learning 19 / 30



Discrete Canonical System

▶ In the previous formulation, a DMP is a time-dependent system; this can be problematic if the
execution of multiple systems should be coupled

▶ The dependence on time is eliminated by introducing a first-order equation referred to as the
canonical system:
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Using DMPs With Multiple Degrees of Freedom

▶ The DMP definition considers only the evolution of a single variable y; however, in practice, we
want to control multiple variables (e.g. an end effector trajectory in 3D or the trajectory of multiple
arm joints)

▶ The evolution of multiple degrees of freedom can be synchronised by coupling the equations of
the individual degrees of freedom

▶ One way to achieve this is to use a single canonical system for controlling the evolution of
multiple degrees of freedom

▶ Useful for controlling a single manipulator (this is the strategy of choice in our code base)

▶ Another alternative is to couple multiple canonical systems

▶ Can be used for synchronising the motion of multiple manipulators
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Canonical System for Rhythmic Motions

▶ The DMP discussed until now has a decaying canonical
system; this defines a point attractor and cannot be used to
define rhythmic motions

▶ For a phase angle φ, the canonical system can be redefined as

τφ̇ = 1

▶ For a given amplitute r, f can then be defined as

f(ϕ, r) =

∑n
i=1 Ψi(ϕ)wi∑x
i=1 Ψi(ϕ)

r

▶ The basis functions in this case are sinusoidal:

Ψi(ϕ) = exp (hi (cos (ϕ− ci)− 1))
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Weight Learning Using Locally Weighted Regression (1/2)

▶ A demonstration is a sequence of T measurements D = (d1, ..., dT ), where
dt = (t, ydemot , ẏdemot , ÿdemot), 1 ≤ t ≤ T

▶ Substituting the demonstration points into the equation of the system results in expression for the
forcing term:

τ2ÿdemo − αz (βz (g − ydemo)− τ ẏdemo) = f∗

▶ The learning objective is that of finding weights that bring the DMP forcing term f as close
as possible to the desired forcing term f∗; this objective is expressed as

Ji =

T∑
i=1

Ψi(t) (f
∗(t)− wiξ(t))

2

▶ In this equation, ξ(t) = x(g − y0) for a discrete system and ξ(t) = r for a rhythmic system
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Weight Learning Using Locally Weighted Regression (2/2)

▶ A solution for the objective can be found using locally weighted regression

▶ Concretely, the weights wi, 1 ≤ i ≤ N are found as

wi =
ξTΓif

∗

ξTΓiξ

where

ξ =


ξ(1)
...

ξ(t)
...

ξ(T )

 Γi =


Ψi(1) 0

. . .

Ψ(t)
. . .

0 Ψi(T )

 f∗ =


f∗(1)

...
f∗(t)
...

f∗(T )


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Obstacle Avoidance

H. Hoffmann et al., “Biologically-inspired dynamical systems for
movement generation: Automatic real-time goal adaptation and
obstacle avoidance,” in Proc. IEEE Int. Conf. Robotics and

Automation (ICRA), 2009, pp. 2587–2592.

▶ The dynamic system formulation makes it relatively
simple to incorporate additional inputs to the system

▶ One way in which this can be achieved is by changing
the system equations online to include additional
forcing terms that can change the system’s behaviour

▶ For obstacle avoidance, the external force should decay
exponentially with the distance to the obstacle so
that the system can eventually return to its original goal

▶ This idea is similar to how potential fields work
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Learning Trajectories from Multiple Demonstrations:
Gaussian Mixture Models
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(Reminder) Gaussian Mixture Model (GMM)

▶ A multimodal distribution can modelled by a linear
combination of K Gaussian distributions

▶ A Gaussian mixture model (GMM) has the form

p(x) =

K∑
k=1

πkN (x|µk,Σk)

▶ The parameters πk are the mixing coefficients, such that
0 ≤ πk ≤ 1 and

∑K
k=1 πk = 1

▶ Given data to be modelled by a GMM, the
expectation-maximisation algorithm is used to find the
parameters of the mixture components
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Learning from Multiple Demonstrations Objective

▶ When learning from multiple demonstrations, we are given a collection of M demonstrations
T = {D1, ..., DM}
▶ Each Di, 1 ≤ i ≤ M can be defined as Di = (t,xt, ẋt) , 1 ≤ t ≤ T

▶ The learning objective is to find a model that:

▶ summarises the distribution of the M demonstrations

▶ makes it possible to sample trajectories for execution

▶ Such a model can be represented by a GMM, and the learning objective becomes that of learning
the GMM parameters
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▶ The learning objective is to find a model that:

▶ summarises the distribution of the M demonstrations

▶ makes it possible to sample trajectories for execution

▶ Such a model can be represented by a GMM, and the learning objective becomes that of learning
the GMM parameters

LfD: An Overview With a Focus on Trajectory Learning 27 / 30



Learning from Multiple Demonstrations Objective

▶ When learning from multiple demonstrations, we are given a collection of M demonstrations
T = {D1, ..., DM}
▶ Each Di, 1 ≤ i ≤ M can be defined as Di = (t,xt, ẋt) , 1 ≤ t ≤ T

▶ The learning objective is to find a model that:

▶ summarises the distribution of the M demonstrations

▶ makes it possible to sample trajectories for execution

▶ Such a model can be represented by a GMM, and the learning objective becomes that of learning
the GMM parameters

LfD: An Overview With a Focus on Trajectory Learning 27 / 30



Learning from Multiple Demonstrations Objective

▶ When learning from multiple demonstrations, we are given a collection of M demonstrations
T = {D1, ..., DM}
▶ Each Di, 1 ≤ i ≤ M can be defined as Di = (t,xt, ẋt) , 1 ≤ t ≤ T
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Trajectory GMM

▶ The underlying system model is a first-order equation of the form

ẋ = f(x) + ϵ

▶ Given T, f is represented by a GMM as the joint distribution

P (x, ẋ) =
K∑

k=1

πkP (x, ẋ|k) =
K∑

k=1

πkP
(
xt,i, ẋt,i|k

)
, 1 ≤ i ≤ M, 1 ≤ t ≤ T

▶ As the components of the mixture are Gaussian distributions, their parameters are the mean and
covariance matrix, which are represented as

µk =

(
µk

x

µk
ẋ

)
Σk =

(
Σk

x Σk
xẋ

Σk
ẋx Σk

ẋ

)
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Trajectory Execution

▶ During execution, appropriate velocities ẋ need to be calculated so that a robot can execute a
trajectory based on the model

▶ The expectation of the posterior estimate P (ẋ|x) can be found as

ẋ =

K∑
k=1

πkP (x|k)∑K
i=1 πiP (x|k)

(
µk

ẋ +Σk
xẋ

(
Σk

x

)−1 (
x− µk

x

))
=

K∑
k=1

hk(x)
(
Akx+ bk

)
where

hk(x) =
πkP (x|k)∑K
i=1 πiP (x|k) Ak = Σk

xẋ

(
Σk

x

)−1
bk = µk

ẋ −Akµk
x
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Summary

▶ Learning from demonstration is a technique based on which a robot acquires learning data from
expert demonstrations

▶ Demonstrations can be collected in different ways: using kinesthetic teaching, by teleoperation, or
based on observations from an external perspective

▶ Learning from demonstration has various uses, namely it can be used to learn execution policies,
complete task models, or reward models

▶ In the dynamic motion primitives (DMP) framework, motion is modelled by a second-order
dynamical system; this system has a force term whose parameters are learned given a demonstration

▶ Multiple demonstrations can be used to learn a probabilistic model (a trajectory envelope), for
instance in the form of a Gaussian mixture model
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