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Why Learning for Robot Navigation
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Typical Robot Navigation Workflow

» A typical robot navigation scenario starts by creating a
map of the environment in which the robot needs to
navigate

» In that map, the robot then has to:
» localise

» find path plans that bring it from its current location to
a goal location

» find and apply low-level motion commands that will
bring the robot to the goal

» Under this framework, a robot can only navigate in a -

known environment with a (more or less) static
environment (so that the map does not change)
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Continuous Mapping Using SLAM

» A more generic workflow is one in which simultaneous
localisation and mapping (SLAM) is performed, which
allows the map to be updated (in principle)

» SLAM also makes it possible to navigate in unknown
environment, as a robot can create a map on the fly
while using it for navigation

» This eliminates the limitation of only being able to
navigate in a known environment. Problem solved? -—>-

=
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mbilerobot navigation using ®

Global and Local Planning

» As mentioned on the previous slides, the actual
navigation act involves path and motion planning
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Global and Local Planning

» As mentioned on the previous slides, the actual
navigation act involves path and motion planning

> Path (aka global) planning is the problem of finding a
viable (typically collision-free) path from the robot’s
current location to its destination

» A path plan is created within a known map

» A path is usually decomposed into a sequence of
waypoints through which the robot should pass
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Global and Local Planning

» As mentioned on the previous slides, the actual
navigation act involves path and motion planning

> Path (aka global) planning is the problem of finding a
viable (typically collision-free) path from the robot’s

current location to its destination okl Geal
» A path plan is created within a known map Reomsetsilon
» A path is usually decomposed into a sequence of
waypoints through which the robot should pass Global Path
» Motion (aka local) planning is concerned with finding Perceptual Input
appropriate robot motion commands A
» Unlike global planners, local planners consider current e
sensor measurements Babot

» Local planners typically ensure that the robot passes
through the waypoints, potentially based on certain
motion constraints

» Local planning requires a motion model of the robot
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Challenges with the Traditional Navigation Approach

Typical navigation algorithms use only the
geometry of the environment, but important
semantic aspects and cues are ignored
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Challenges with the Traditional Navigation Approach

Typical navigation algorithms use only the
geometry of the environment, but important
semantic aspects and cues are ignored
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Many motion planners assume that a robot
navigates on a plane — this does not always
hold, particularly in outdoor environments
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Challenges with the Traditional Navigation Approach

Typical navigation algorithms use only the Many motion planners assume that a robot
geometry of the environment, but important navigates on a plane — this does not always
semantic aspects and cues are ignored hold, particularly in outdoor environments

Robot motion planning algorithms are usually
hand-tuned, and reusability between robot
platforms is usually not guaranteed

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

jmsnw for Al and
Autonomous s Systems Learning for Robot Navigation: An Overview 7/22



Challenges with the Traditional Navigation Approach

Typical navigation algorithms use only the Many motion planners assume that a robot
geometry of the environment, but important navigates on a plane — this does not always
semantic aspects and cues are ignored hold, particularly in outdoor environments
‘Hand-designed motion planning Inability to use prior experiences
Robot motion planning algorithms are usually Every navigation trial is treated

hand-tuned, and reusability between robot independently of prior trials, which makes it
platforms is usually not guaranteed impossible to improve based on experience
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Challenges with the Traditional Navigation Approach

Typical navigation algorithms use only the Many motion planners assume that a robot
geometry of the environment, but important navigates on a plane — this does not always
semantic aspects and cues are ignored hold, particularly in outdoor environments
Robot motion planning algorithms are usually Every navigation trial is treated

hand-tuned, and reusability between robot independently of prior trials, which makes it
platforms is usually not guaranteed impossible to improve based on experience

Most standard navigation frameworks are
designed for known environments; adapting
them for new environments can be challenging
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Indoor vs. Outdoor Navigation

Indoor navigation

» Structured environments overall, but with a
large diversity in how this structure
manifests itself

» Environments typically change dynamically

» Although that depends on the application
domain (e.g. a package delivery center
may be rather static)

» Often navigation among people necessary

O . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Learning for Robot Navigation: An Overview

/22



Indoor vs. Outdoor Navigation

Indoor navigation

» Structured environments overall, but with a
large diversity in how this structure
manifests itself

» Environments typically change dynamically

» Although that depends on the application
domain (e.g. a package delivery center
may be rather static)

» Often navigation among people necessary
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Outdoor navigation

» A large variety of environments and terrains
(including extraterrestrial environments)

» Environments usually more static

» But again, that depends on the application
domain (e.g. roads are not very static)

» In some domains, navigation needs to follow

well-defined rules (e.g. in autonomous
driving)
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Navigation Learning Strategies
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Formal Framework

» From a formal point of view, the overall problem of applying learning for navigation does not
differ much from that of using learning for manipulation
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Formal Framework

» From a formal point of view, the overall problem of applying learning for navigation does not
differ much from that of using learning for manipulation

» Thus, we can also observe navigation learning in terms of a task family of t tasks, which can be
represented as a collection of Markov Decision Processes (MDPs):
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Formal Framework

» From a formal point of view, the overall problem of applying learning for navigation does not
differ much from that of using learning for manipulation

» Thus, we can also observe navigation learning in terms of a task family of t tasks, which can be
represented as a collection of Markov Decision Processes (MDPs):

PM) ={(S;, A, T, R, Ci, ) |1 < i < t}

» The overall state representation S; also the same: S; =S, U S,
» But navigation is not concerned with handling objects, so a factored object-centric representation
would typically not be useful for S.
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State Representations

» The state for learning-based navigation can be represented in a variety of ways

» Some of these are illustrated in the figure below

oe

GPS data IMU mesurements

Y

«—— Raw sensor data ————

|

RGB cameras Lidar points

Distances to obstacles «—— Extracted features ——————— Detected objects / people

|
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Motion planning and control for mobile abot navigation using )
machine learning:  survey

What to Learn for Navigation? EE .
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Parameter Learning
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Parameter Learning

Parameters:

Max Speed,
Sampling Rate,
Inflation Radius, etc.

Motion planning and control for mobile abot navigation using
machine learning:  survey

» Learning can be used within the established navigation
framework, where parameters that are used by
components can be learned (e.g. parameters of local
planners)
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Parameter Learning

Parameters:

Max Speed,
Sampling Rate,
Inflation Radius, etc.

mobilerobot navigation using

» Learning can be used within the established navigation
framework, where parameters that are used by
components can be learned (e.g. parameters of local
planners)

> Learning can be useful for a large variety of parameters,
e.g. weights of cost functions used during planning,
motion model parameters, parameters of predictive
models, etc.
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mobilerobot navigation using

Parameter Learning

» Learning can be used within the established navigation
framework, where parameters that are used by

Parameter Learning components can be learned (e.g. parameters of local

planners)
Mo, > Learning can be useful for a large variety of parameters,
1 g Sempling Rt e.g. weights of cost functions used during planning,
nflation Radius, etc. . ..
motion model parameters, parameters of predictive
models, etc.

» This makes it possible to both preserve the properties
of existing algorithms and improve those based on
the experiences of a robot
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Motion planning and control for mobile abot navigation using
machine learning

Learning Dedicated Navigation Components

Action &, ,
s e it o
W oupus - T
Image 0; = Policy parameters ? sy :gmmm .
4 ) _'I Ct+h

8 comv N _ sx3conv .
32 fners .. 64 fters o4 fiters I 256 tuly 256 fully 128 fully )
stiide 2 stride 2 stride 2 comnected | | connected | | connected | 128 fully - /’
ReLl ReLU ReLU connected| .
RelU RelU RelU. fatten N L 2 :
M o <t
connected

S . ReLU P

\ » £ T

[I ‘I Ctthn

G. Kahn, P. Abbeel and S. Levine, “BADGR: An Autonomous Self-Supervised Learning-Based Navigation System,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1312-1319, 2021.

» Another alternative to incorporate learning into a robot navigation framework is to replace
complete components by a learning-based version
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G. Kahn, P. Abbeel and S. Levine, “BADGR: An Autonomous Self-Supervised Learning-Based Navigation System,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1312-1319, 2021.

» Another alternative to incorporate learning into a robot navigation framework is to replace
complete components by a learning-based version

» Different components can be replaced in this manner, for instance:
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Learning Dedicated Navigation Components

machine learning:
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G. Kahn, P. Abbeel and S. Levine, “BADGR: An Autonomous Self-Supervised Learning-Based Navigation System,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1312-1319, 2021.

» Another alternative to incorporate learning into a robot navigation framework is to replace

complete components by a learning-based version

» Different components can be replaced in this manner, for instance:
» a trained policy can be used instead of a local planner

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

nstitute for Al and
‘A“W"“'“““SSV“E'“ Learning for Robot Navigation: An Overview

14 /22



Motion planning and control for mobile abot navigation using
machine learning:  survey

Learning Dedicated Navigation Components
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G. Kahn, P. Abbeel and S. Levine, “BADGR: An Autonomous Self-Supervised Learning-Based Navigation System,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1312-1319, 2021.

» Another alternative to incorporate learning into a robot navigation framework is to replace
complete components by a learning-based version

» Different components can be replaced in this manner, for instance:
» a trained policy can be used instead of a local planner

» predictions produced by a learned model can be used for motion planning, e.g. as in BADRG (a
diagram of the component learned there is shown above)
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Learning Robotic Navigation from Experience:

Principles, Metl Recent Results

End-To-End Navigation Learning

» A more radical approach is to replace the complete
navigation pipeline with learning-based components
that are trained in an end-to-end fashion (i.e. where

End-to-End Learning the learned model outputs motion commands directly
based on sensory input)

State| |Reward Action
X R A
Raw Actions:

v, W
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 mobile robot navigation using

End-To-End Navigation Learning

» A more radical approach is to replace the complete
navigation pipeline with learning-based components
that are trained in an end-to-end fashion (i.e. where

End-to-End Learning the learned model outputs motion commands directly
based on sensory input)

— N—
- » The attractive prospect of this is that the engineering

effort required by the traditional navigation

State, |Reward Action it e
X e A framework is, in principle, reduced
Raw Actions: » Although whether that holds depends on how learning is

2rl exactly performed
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 mobile robot navigation using

End-To-End Navigation Learning

» A more radical approach is to replace the complete
navigation pipeline with learning-based components
that are trained in an end-to-end fashion (i.e. where

End-to-End Learning the learned model outputs motion commands directly
based on sensory input)
— p—
- » The attractive prospect of this is that the engineering
Statel |Reward o effort required by the traditional navigation
X e A framework is, in principle, reduced
I it » Although whether that holds depends on how learning is

2rl exactly performed

» End-to-end learning leads to black-box models whose
decision-making process can be difficult to analyse
» This is in contrast to components used in traditional
navigation, which are usually based on mathematical
models that are easier to understand
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Action Spaces for Navigation Policies

» Depending on what is learned, navigation policies can have a variety of action spaces:
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Action Spaces for Navigation Policies
» Depending on what is learned, navigation policies can have a variety of action spaces:

» The figure looks familiar? It is exactly the same as the one we had in the case of robot
manipulation (last lecture)!
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The Case of Autonomous Driving
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Learning in Autonomous Driving

» Autonomous driving is a very challenging problem due to the fact that roads are very
dynamic and involve many other traffic participants
» Pure model-based methods can quickly reach their limit here because there are simply too many
relevant aspects to consider
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Learning in Autonomous Driving

» Autonomous driving is a very challenging problem due to the fact that roads are very
dynamic and involve many other traffic participants

» Pure model-based methods can quickly reach their limit here because there are simply too many
relevant aspects to consider

» Autonomous driving is an important area where the benefits of learning have been directly visible

» Particularly advances in computer vision have made it possible to process complex input and, as
a result, produce more complex driving behaviours
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Autonomous Drivi

Driving Tasks Where Learning Has Been Applied
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Autonomous Driving Framework
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Deep Reinforcement Learning for
Autonomous Drivi

A Survey
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ey |5t M9a||

Object Detection
Lane Detection
Semantic Segmentation

Plan & Decide Control

[l

DO

Cameras
LIDAR

Sensor Fusion Path & Motion planning
Behavior Prediction Trajectory optimization
Object Map Driving Policy

RADAR

Velocity profile
Ultrasonics

Steering
Acceleration & Braking

SLAM
HD Maps

{———————— Decision making & Planning ———)

» From a general point of view,

the navigation framework for an autonomous vehicle is the
same as that for any other

mobile robot (see the figure below)
» But the necessity to follow

traffic rules is a major difference with other navigation domains
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Autonomous Driving Framework

s o ) ° ° [-~8

———— Scene Understanding —_—

Sense Perceive & Localize Scene Representation Plan & Decide Control

ey |5t M9a||

Object Detection
Lane Detection
Semantic Segmentation

[l

DO

Cameras
LIDAR

Sensor Fusion
Behavior Prediction
Object Map

Path & Motion planning
Trajectory optimization
Driving Policy

Velocity profile
Steering

RADAR Acceleration & Braking

Ultrasonics

SLAM
HD Maps

{———————— Decision making & Planning ———)

» From a general point of view, the navigation framework for an autonomous vehicle is the
same as that for any other mobile robot (see the figure below)

» But the necessity to follow traffic rules is a major difference with other navigation domains

» An autonomous vehicle navigates in an outdoor environment, so it can benefit from additional
signals (e.g. GPS) that cannot be used in indoor environments
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Autonomous Driving Based on Deep Learning

» Due to its ability to process high-dimensional data, deep

learning has been applied to a variety of
autonomous driving problems

Deep Learning
(or Classical)
Perception and
Localization

Learning-based
(or Classical)
Motion Controllers

x

Autonomous
Vehicle. ‘

Safety Monitor |

S. Grigorescu et al., “A survey of deep learning techniques for

autonomous driving,” Journal of Field Robotics, vol. 37, no. 3, pp.
362-386, Apr. 2020.
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Autonomous Driving Based on Deep Learning

» Due to its ability to process high-dimensional data, deep

learning has been applied to a variety of

autonomous driving problems

» The most common approach is to use deep learning for
specific aspects of the driving pipeline, for instance:

Penilearing Learning-based
Autonomons

Vehicle.

(or Classical) ( ical)
(or Clssical)
Perception and . Motion Controllers

Localization

x

Safety Monitor

S. Grigorescu et al., “A survey of deep learning techniques for
autonomous driving,” Journal of Field Robotics, vol. 37, no. 3, pp.
362-386, Apr. 2020.
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Autonomous Driving Based on Deep Learning
» Due to its ability to process high-dimensional data, deep

learning has been applied to a variety of

autonomous driving problems

» The most common approach is to use deep learning for
specific aspects of the driving pipeline, for instance:

Deep Learning
(or Classical)
Perception and
Localization

Autonomous
Vehicle.

x

Safety Monitor

S. Grigorescu et al., “A survey of deep learning techniques for
autonomous driving,” Journal of Field Robotics, vol. 37, no. 3, pp.
362-386, Apr. 2020.

o . Hochschule S somaachen
Bonn-Rhein-Sieg - I s nstiute for Al and
Informaton Technology Autonomous Sytems

University of Applied Sciences

» detecting people and other vehicles (scene

understanding)

Learning for Robot Navigation: An Overview

21 /22



Autonomous Driving Based on Deep Learning

» Due to its ability to process high-dimensional data, deep
learning has been applied to a variety of
autonomous driving problems

» The most common approach is to use deep learning for
specific aspects of the driving pipeline, for instance:

» detecting people and other vehicles (scene
e Torig : understanding)

(or Classical) ( Autonomous
Vehicle.

Classical)
Perception and 2 i Motion Controllers

= o » controlling particular driving behaviours, such as lane

x

S keeping, using a learned policy (motion planning)

S. Grigorescu et al., “A survey of deep learning techniques for
autonomous driving,” Journal of Field Robotics, vol. 37, no. 3, pp.
362-386, Apr. 2020.
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Autonomous Driving Based on Deep Learning
» Due to its ability to process high-dimensional data, deep
learning has been applied to a variety of
autonomous driving problems

» The most common approach is to use deep learning for
specific aspects of the driving pipeline, for instance:
» detecting people and other vehicles (scene
understanding)

Deep Learning

(or Classical) ( Autonomous
Vehicle.

Perception and . ¥ [ ) . 3 L. .
= o » controlling particular driving behaviours, such as lane

S keeping, using a learned policy (motion planning)

S. Grigorescu et al., “A survey of deep learning techniques for
autonomous driving,” Journal of Field Robotics, vol. 37, no. 3, pp.

362-386, Apr. 2020. » Attempts to use end-to-end deep learning also exist
00 s b-|t ] .."
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Autonomous Driving Based on Deep Learning

» Due to its ability to process high-dimensional data, deep
learning has been applied to a variety of
autonomous driving problems

» The most common approach is to use deep learning for
specific aspects of the driving pipeline, for instance:

» detecting people and other vehicles (scene
understanding)

Autonomous
Vehicle.

Perc nd Hi . . .. .
Rk e : » controlling particular driving behaviours, such as lane
keeping, using a learned policy (motion planning)

Safety Monitor

S. Grigorescu et al., “A survey of deep learning techniques for
autonomous driving,” Journal of Field Robotics, vol. 37, no. 3, pp.

3627386, Apr. 2020. » Attempts to use end-to-end deep learning also exist

» Deep neural networks need dedicated hardware (e.g.
graphic cards) to run efficiently
» Autonomous driving requires real-time control, so
applying deep learning on autonomous vehicles requires
implementations that support efficient inference
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Explainability

» When using (deep) learning in robot navigation (but

System Management

User Interface

Collection of explanations

| ExplanatonLog vt

Text Accidont Investigator:
What did you do between time t1 and (37
rnoul] Why did you take route x?
{explanation at 1:
explantion Explanation
Voics. explanation at 5:
u A
Qf"’ ‘Explanation

—) EXplanatons™ | pyrcapion & Localsaton |<—>|  Planming > Control
Event Data Recorder ents—> o

r ¥

Sensors  Perception & Localisation: ~ Behaviour & Motion Planning ~ Vehicie Control & Actuation
sensors (o, Camerss, | i
e N poopon (| sehaviou Paming Longhudnal
s V )
H Lateralcontrol
il |

D. Omeiza et al., “Explanations in Autonomous Driving: A Survey,”
IEEE Trans. Intelligent Transportation Systems, vol. 23, no. 8, pp.

10142-10162, Aug. 2022.
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particularly in autonomous driving), it is not always
easy to understand why a decision has been made
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Explainability

System Management
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When using (deep) learning in robot navigation (but
particularly in autonomous driving), it is not always
easy to understand why a decision has been made

The property of being able to understand an
autonomous decision-making process is referred to as
explainability
» Particularly relevant in case of failures that lead to
accidents
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When using (deep) learning in robot navigation (but
particularly in autonomous driving), it is not always
easy to understand why a decision has been made

The property of being able to understand an
autonomous decision-making process is referred to as
explainability
» Particularly relevant in case of failures that lead to
accidents

Certifying autonomous driving behaviours is generally
difficult if explainability cannot be guaranteed
» Various ideas for how explainability should be
achieved exist in the literature (one example is shown
on the left)
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When using (deep) learning in robot navigation (but
particularly in autonomous driving), it is not always
easy to understand why a decision has been made

The property of being able to understand an
autonomous decision-making process is referred to as
explainability
» Particularly relevant in case of failures that lead to
accidents

Certifying autonomous driving behaviours is generally
difficult if explainability cannot be guaranteed
» Various ideas for how explainability should be
achieved exist in the literature (one example is shown
on the left)

We will discuss techniques for explainability later in the
course
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