
Learning for Robot Manipulation
An Overview

Dr. Alex Mitrevski
Master of Autonomous Systems

Structure

▶ Why learning for robot manipulation

▶ Overview of learning for manipulation

▶ State representation

▶ Manipulation policy learning

▶ Transition model learning

Learning for Robot Manipulation 2 / 44

Why Learning for Robot Manipulation

Learning for Robot Manipulation 3 / 44

Manipulation Skill Examples

▶ In everyday environments, there is a
large variety of useful manipulation
skills, which require varying degrees
of dexterity

▶ Many such skills can be designed
using model-based techniques, but
many others require flexibility that
can be tricky to model explicitly

▶ An alternative approach is to allow a
robot to acquire such skills
(semi-)autonomously

Learning for Robot Manipulation 4 / 44

Manipulation Skill Examples

▶ In everyday environments, there is a
large variety of useful manipulation
skills, which require varying degrees
of dexterity

▶ Many such skills can be designed
using model-based techniques, but
many others require flexibility that
can be tricky to model explicitly

▶ An alternative approach is to allow a
robot to acquire such skills
(semi-)autonomously

Learning for Robot Manipulation 4 / 44

Manipulation Skill Examples

▶ In everyday environments, there is a
large variety of useful manipulation
skills, which require varying degrees
of dexterity

▶ Many such skills can be designed
using model-based techniques, but
many others require flexibility that
can be tricky to model explicitly

▶ An alternative approach is to allow a
robot to acquire such skills
(semi-)autonomously

Learning for Robot Manipulation 4 / 44

Learning for Contact-Heavy Interactions

▶ Learning can be particularly useful to consider for
manipulation tasks that involve prolonged or precise
contacts with the environment

▶ This is because, in principle, contact-heavy
interactions can be challenging to model in
sufficient detail

▶ Instead, it is sensible to allow a robot to learn an
appropriate interaction policy

Learning for Robot Manipulation 5 / 44

Learning for Contact-Heavy Interactions

▶ Learning can be particularly useful to consider for
manipulation tasks that involve prolonged or precise
contacts with the environment

▶ This is because, in principle, contact-heavy
interactions can be challenging to model in
sufficient detail

▶ Instead, it is sensible to allow a robot to learn an
appropriate interaction policy

Learning for Robot Manipulation 5 / 44

Learning for Contact-Heavy Interactions

▶ Learning can be particularly useful to consider for
manipulation tasks that involve prolonged or precise
contacts with the environment

▶ This is because, in principle, contact-heavy
interactions can be challenging to model in
sufficient detail

▶ Instead, it is sensible to allow a robot to learn an
appropriate interaction policy

Learning for Robot Manipulation 5 / 44

Learning and Robot Control

▶ Particularly when considering manipulation motor skills, the learning problem is very related to
that solved by classical control theory: make a robot act so that a certain objective is satisfied

▶ The approaches are, however, conceptually different:

▶ Control theory models systems and controllers explicitly
▶ Learning enables robots to optimise controllers through direct experience

▶ Depending on the nature of the learning problem, a combination of control theory and learning
is both possible and reasonable (e.g. learning can be used to optimise the parameters of an
explicitly modelled controller)

Learning for Robot Manipulation 6 / 44

Learning and Robot Control

▶ Particularly when considering manipulation motor skills, the learning problem is very related to
that solved by classical control theory: make a robot act so that a certain objective is satisfied

▶ The approaches are, however, conceptually different:

▶ Control theory models systems and controllers explicitly
▶ Learning enables robots to optimise controllers through direct experience

▶ Depending on the nature of the learning problem, a combination of control theory and learning
is both possible and reasonable (e.g. learning can be used to optimise the parameters of an
explicitly modelled controller)

Learning for Robot Manipulation 6 / 44

Learning and Robot Control

▶ Particularly when considering manipulation motor skills, the learning problem is very related to
that solved by classical control theory: make a robot act so that a certain objective is satisfied

▶ The approaches are, however, conceptually different:

▶ Control theory models systems and controllers explicitly
▶ Learning enables robots to optimise controllers through direct experience

▶ Depending on the nature of the learning problem, a combination of control theory and learning
is both possible and reasonable (e.g. learning can be used to optimise the parameters of an
explicitly modelled controller)

Learning for Robot Manipulation 6 / 44

Lessons from Natural Systems

▶ The perspective on the previous slides is a practical one — explicitly programming robot skills
is often challenging or inflexible, so we use learning techniques instead

▶ Learning is also interesting to look at from a cognitive developmental point of view —
after all, biological creatures acquire most of their skills via learning

▶ Robots that have learning and adaptation capabilities that are similar to those of biological
creatures are likely to be most useful in our complex, regularly changing environments

D. Han and K. E. Adolph, “The impact of errors in infant development: Falling like a baby,” Developmental Science, vol. 24, no. 5, pp. e13069:1–14, 2020.

Learning for Robot Manipulation 7 / 44

Overview of Learning for Manipulation

Learning for Robot Manipulation 8 / 44

What to Learn for Manipulation?

Learning in the manipulation context can be concerned with multiple aspects, for instance:

Object models

Manipulation tasks generally involve handling
objects, whose models (e.g. visual recognition
models or part models) can be learned

Policy parameters

In many cases, we want a robot to execute a
motor policy πθ that is defined by well-defined
parameters θ, which need to be learned

Skill models
In a more general case, a complete skill can be
learned (a policy as well as the skill’s initiation
and termination conditions)

Skill hierarchies

When multiple (primitive) skills are available, it
can be useful to learn how the skills can be
combined for solving complex tasks

Learning for Robot Manipulation 9 / 44

What to Learn for Manipulation?

Learning in the manipulation context can be concerned with multiple aspects, for instance:

Object models

Manipulation tasks generally involve handling
objects, whose models (e.g. visual recognition
models or part models) can be learned

Policy parameters

In many cases, we want a robot to execute a
motor policy πθ that is defined by well-defined
parameters θ, which need to be learned

Skill models
In a more general case, a complete skill can be
learned (a policy as well as the skill’s initiation
and termination conditions)

Skill hierarchies

When multiple (primitive) skills are available, it
can be useful to learn how the skills can be
combined for solving complex tasks

Learning for Robot Manipulation 9 / 44

What to Learn for Manipulation?

Learning in the manipulation context can be concerned with multiple aspects, for instance:

Object models

Manipulation tasks generally involve handling
objects, whose models (e.g. visual recognition
models or part models) can be learned

Policy parameters

In many cases, we want a robot to execute a
motor policy πθ that is defined by well-defined
parameters θ, which need to be learned

Skill models
In a more general case, a complete skill can be
learned (a policy as well as the skill’s initiation
and termination conditions)

Skill hierarchies

When multiple (primitive) skills are available, it
can be useful to learn how the skills can be
combined for solving complex tasks

Learning for Robot Manipulation 9 / 44

What to Learn for Manipulation?

Learning in the manipulation context can be concerned with multiple aspects, for instance:

Object models

Manipulation tasks generally involve handling
objects, whose models (e.g. visual recognition
models or part models) can be learned

Policy parameters

In many cases, we want a robot to execute a
motor policy πθ that is defined by well-defined
parameters θ, which need to be learned

Skill models
In a more general case, a complete skill can be
learned (a policy as well as the skill’s initiation
and termination conditions)

Skill hierarchies

When multiple (primitive) skills are available, it
can be useful to learn how the skills can be
combined for solving complex tasks

Learning for Robot Manipulation 9 / 44

Learning for Manipulation Overview

Learning for Robot Manipulation 10 / 44

State Representation

Learning for Robot Manipulation 11 / 44

Why Does the State Representation Matter?

▶ The overall objective of robot manipulation is to enable robots to perform purposeful actions in
the world, namely actions that change the environment so that some desired goal can be achieved

▶ The manner in which the environment changes based on a robot’s actions can be captured
by a change of state; thus, the state representation should be able to capture relevant changes
in the environment

▶ In addition, an appropriate state representation is often responsible for simplifying otherwise
intractable learning problems

Learning for Robot Manipulation 12 / 44

Why Does the State Representation Matter?

▶ The overall objective of robot manipulation is to enable robots to perform purposeful actions in
the world, namely actions that change the environment so that some desired goal can be achieved

▶ The manner in which the environment changes based on a robot’s actions can be captured
by a change of state; thus, the state representation should be able to capture relevant changes
in the environment

▶ In addition, an appropriate state representation is often responsible for simplifying otherwise
intractable learning problems

Learning for Robot Manipulation 12 / 44

Why Does the State Representation Matter?

▶ The overall objective of robot manipulation is to enable robots to perform purposeful actions in
the world, namely actions that change the environment so that some desired goal can be achieved

▶ The manner in which the environment changes based on a robot’s actions can be captured
by a change of state; thus, the state representation should be able to capture relevant changes
in the environment

▶ In addition, an appropriate state representation is often responsible for simplifying otherwise
intractable learning problems

Learning for Robot Manipulation 12 / 44

Robot and Environment State

▶ Robot actions have an effect both on the robot itself and on the robot’s environment

▶ A general state representation thus has to capture both of these aspects and has the following form:

S = Sr ∪ Se

where

▶ Sr is a representation of the robot’s internal state

▶ Se represents the state of the task environment

Learning for Robot Manipulation 13 / 44

Object-Centric Environment Representation

▶ As manipulation is typically concerned with handling objects, the environment state is typically
modelled through the states of individual objects of interest

▶ Let Oj represent the state of some object oj and n be the number of objects of interest for a task;
then

So =
n
∪

j=1
Oj

▶ In many cases, it can also be useful to capture some general information Sw about the
environment; thus, the complete environment state can be seen as a combination of the
general environment state and the object-specific states:

Se = Sw ∪ So = Sw ∪
(

n
∪

j=1
Oj

)

Learning for Robot Manipulation 14 / 44

Object-Centric Environment Representation

▶ As manipulation is typically concerned with handling objects, the environment state is typically
modelled through the states of individual objects of interest

▶ Let Oj represent the state of some object oj and n be the number of objects of interest for a task;
then

So =
n
∪

j=1
Oj

▶ In many cases, it can also be useful to capture some general information Sw about the
environment; thus, the complete environment state can be seen as a combination of the
general environment state and the object-specific states:

Se = Sw ∪ So = Sw ∪
(

n
∪

j=1
Oj

)

Learning for Robot Manipulation 14 / 44

Object-Centric Environment Representation

▶ As manipulation is typically concerned with handling objects, the environment state is typically
modelled through the states of individual objects of interest

▶ Let Oj represent the state of some object oj and n be the number of objects of interest for a task;
then

So =
n
∪

j=1
Oj

▶ In many cases, it can also be useful to capture some general information Sw about the
environment; thus, the complete environment state can be seen as a combination of the
general environment state and the object-specific states:

Se = Sw ∪ So = Sw ∪
(

n
∪

j=1
Oj

)

Learning for Robot Manipulation 14 / 44

Generalisation over Contexts

▶ When a robot learns an execution policy, the policy is typically specific for certain environmental
parameters (e.g. for a specific object mass) that remain constant during the execution

▶ The dependence on such parameters can be made explicit by representing them as an execution
context vector τ ∈ C

▶ The execution context can then serve as information that conditions the execution policy:

π : S × C → A

Learning for Robot Manipulation 15 / 44

Generalisation over Contexts

▶ When a robot learns an execution policy, the policy is typically specific for certain environmental
parameters (e.g. for a specific object mass) that remain constant during the execution

▶ The dependence on such parameters can be made explicit by representing them as an execution
context vector τ ∈ C

▶ The execution context can then serve as information that conditions the execution policy:

π : S × C → A

Learning for Robot Manipulation 15 / 44

Generalisation over Contexts

▶ When a robot learns an execution policy, the policy is typically specific for certain environmental
parameters (e.g. for a specific object mass) that remain constant during the execution

▶ The dependence on such parameters can be made explicit by representing them as an execution
context vector τ ∈ C

▶ The execution context can then serve as information that conditions the execution policy:

π : S × C → A

Learning for Robot Manipulation 15 / 44

Task Family

▶ When modelling learning problems, we can often define a task family, which is a collection of
tasks Ti, 1 ≤ i ≤ t that

▶ have the same action space A
▶ but each of them has its own state space Si, context space Ci, a transition function Ti, as well as a

reward function Ri

▶ The relation between tasks of a task family can be expressed through the reward function
Ri, which can be modelled as

Ri = Gi − E

where Gi represents a task-specific goal and E is a common cost function

▶ Overall, a task family of t tasks can be represented as a collection of Markov Decision
Processes (MDPs):

P (M) = {(Si, A, Ti, Ri, Ci, γ) | 1 ≤ i ≤ t}

Learning for Robot Manipulation 16 / 44

Task Family

▶ When modelling learning problems, we can often define a task family, which is a collection of
tasks Ti, 1 ≤ i ≤ t that

▶ have the same action space A
▶ but each of them has its own state space Si, context space Ci, a transition function Ti, as well as a

reward function Ri

▶ The relation between tasks of a task family can be expressed through the reward function
Ri, which can be modelled as

Ri = Gi − E

where Gi represents a task-specific goal and E is a common cost function

▶ Overall, a task family of t tasks can be represented as a collection of Markov Decision
Processes (MDPs):

P (M) = {(Si, A, Ti, Ri, Ci, γ) | 1 ≤ i ≤ t}

Learning for Robot Manipulation 16 / 44

Task Family

▶ When modelling learning problems, we can often define a task family, which is a collection of
tasks Ti, 1 ≤ i ≤ t that

▶ have the same action space A
▶ but each of them has its own state space Si, context space Ci, a transition function Ti, as well as a

reward function Ri

▶ The relation between tasks of a task family can be expressed through the reward function
Ri, which can be modelled as

Ri = Gi − E

where Gi represents a task-specific goal and E is a common cost function

▶ Overall, a task family of t tasks can be represented as a collection of Markov Decision
Processes (MDPs):

P (M) = {(Si, A, Ti, Ri, Ci, γ) | 1 ≤ i ≤ t}

Learning for Robot Manipulation 16 / 44

Object Representations
▶ Objects are often part of the state representation in robot manipulation, but there is no unique

way in which objects themselves are modelled

▶ Concretely, there are different hierarchy levels at which objects can be observed:

Point level

Individual object points (e.g. pixels)
are identified

Part level

Objects are represented through their
individual parts (e.g. a cup has a
container and a handle)

Object level

Objects are represented as a whole
(e.g. through a bounding box)

▶ Each of these hierarchies can be useful for different tasks:

▶ A point-level representation is suitable when specific points of an object are relevant during an
interaction (e.g. the prongs of a fork)

▶ Parts can be useful to look at for task-oriented grasping
▶ An object-level representation aids scene understanding, but is also required for ensuring that actions

are performed on an object of interest

▶ Ideally, the hierarchical levels are used by different skills that can be composed to solve a
specific task

Learning for Robot Manipulation 17 / 44

Object Representations
▶ Objects are often part of the state representation in robot manipulation, but there is no unique

way in which objects themselves are modelled

▶ Concretely, there are different hierarchy levels at which objects can be observed:

Point level

Individual object points (e.g. pixels)
are identified

Part level

Objects are represented through their
individual parts (e.g. a cup has a
container and a handle)

Object level

Objects are represented as a whole
(e.g. through a bounding box)

▶ Each of these hierarchies can be useful for different tasks:

▶ A point-level representation is suitable when specific points of an object are relevant during an
interaction (e.g. the prongs of a fork)

▶ Parts can be useful to look at for task-oriented grasping
▶ An object-level representation aids scene understanding, but is also required for ensuring that actions

are performed on an object of interest

▶ Ideally, the hierarchical levels are used by different skills that can be composed to solve a
specific task

Learning for Robot Manipulation 17 / 44

Object Representations
▶ Objects are often part of the state representation in robot manipulation, but there is no unique

way in which objects themselves are modelled

▶ Concretely, there are different hierarchy levels at which objects can be observed:

Point level

Individual object points (e.g. pixels)
are identified

Part level

Objects are represented through their
individual parts (e.g. a cup has a
container and a handle)

Object level

Objects are represented as a whole
(e.g. through a bounding box)

▶ Each of these hierarchies can be useful for different tasks:

▶ A point-level representation is suitable when specific points of an object are relevant during an
interaction (e.g. the prongs of a fork)

▶ Parts can be useful to look at for task-oriented grasping
▶ An object-level representation aids scene understanding, but is also required for ensuring that actions

are performed on an object of interest

▶ Ideally, the hierarchical levels are used by different skills that can be composed to solve a
specific task

Learning for Robot Manipulation 17 / 44

Object Representations
▶ Objects are often part of the state representation in robot manipulation, but there is no unique

way in which objects themselves are modelled

▶ Concretely, there are different hierarchy levels at which objects can be observed:

Point level

Individual object points (e.g. pixels)
are identified

Part level

Objects are represented through their
individual parts (e.g. a cup has a
container and a handle)

Object level

Objects are represented as a whole
(e.g. through a bounding box)

▶ Each of these hierarchies can be useful for different tasks:

▶ A point-level representation is suitable when specific points of an object are relevant during an
interaction (e.g. the prongs of a fork)

▶ Parts can be useful to look at for task-oriented grasping
▶ An object-level representation aids scene understanding, but is also required for ensuring that actions

are performed on an object of interest

▶ Ideally, the hierarchical levels are used by different skills that can be composed to solve a
specific task

Learning for Robot Manipulation 17 / 44

Object Representations
▶ Objects are often part of the state representation in robot manipulation, but there is no unique

way in which objects themselves are modelled

▶ Concretely, there are different hierarchy levels at which objects can be observed:

Point level

Individual object points (e.g. pixels)
are identified

Part level

Objects are represented through their
individual parts (e.g. a cup has a
container and a handle)

Object level

Objects are represented as a whole
(e.g. through a bounding box)

▶ Each of these hierarchies can be useful for different tasks:

▶ A point-level representation is suitable when specific points of an object are relevant during an
interaction (e.g. the prongs of a fork)

▶ Parts can be useful to look at for task-oriented grasping
▶ An object-level representation aids scene understanding, but is also required for ensuring that actions

are performed on an object of interest

▶ Ideally, the hierarchical levels are used by different skills that can be composed to solve a
specific task

Learning for Robot Manipulation 17 / 44

Object Representations
▶ Objects are often part of the state representation in robot manipulation, but there is no unique

way in which objects themselves are modelled

▶ Concretely, there are different hierarchy levels at which objects can be observed:

Point level

Individual object points (e.g. pixels)
are identified

Part level

Objects are represented through their
individual parts (e.g. a cup has a
container and a handle)

Object level

Objects are represented as a whole
(e.g. through a bounding box)

▶ Each of these hierarchies can be useful for different tasks:

▶ A point-level representation is suitable when specific points of an object are relevant during an
interaction (e.g. the prongs of a fork)

▶ Parts can be useful to look at for task-oriented grasping
▶ An object-level representation aids scene understanding, but is also required for ensuring that actions

are performed on an object of interest

▶ Ideally, the hierarchical levels are used by different skills that can be composed to solve a
specific task

Learning for Robot Manipulation 17 / 44

Object Representations
▶ Objects are often part of the state representation in robot manipulation, but there is no unique

way in which objects themselves are modelled

▶ Concretely, there are different hierarchy levels at which objects can be observed:

Point level

Individual object points (e.g. pixels)
are identified

Part level

Objects are represented through their
individual parts (e.g. a cup has a
container and a handle)

Object level

Objects are represented as a whole
(e.g. through a bounding box)

▶ Each of these hierarchies can be useful for different tasks:

▶ A point-level representation is suitable when specific points of an object are relevant during an
interaction (e.g. the prongs of a fork)

▶ Parts can be useful to look at for task-oriented grasping
▶ An object-level representation aids scene understanding, but is also required for ensuring that actions

are performed on an object of interest

▶ Ideally, the hierarchical levels are used by different skills that can be composed to solve a
specific task

Learning for Robot Manipulation 17 / 44

Object Representations
▶ Objects are often part of the state representation in robot manipulation, but there is no unique

way in which objects themselves are modelled

▶ Concretely, there are different hierarchy levels at which objects can be observed:

Point level

Individual object points (e.g. pixels)
are identified

Part level

Objects are represented through their
individual parts (e.g. a cup has a
container and a handle)

Object level

Objects are represented as a whole
(e.g. through a bounding box)

▶ Each of these hierarchies can be useful for different tasks:

▶ A point-level representation is suitable when specific points of an object are relevant during an
interaction (e.g. the prongs of a fork)

▶ Parts can be useful to look at for task-oriented grasping

▶ An object-level representation aids scene understanding, but is also required for ensuring that actions
are performed on an object of interest

▶ Ideally, the hierarchical levels are used by different skills that can be composed to solve a
specific task

Learning for Robot Manipulation 17 / 44

Object Representations
▶ Objects are often part of the state representation in robot manipulation, but there is no unique

way in which objects themselves are modelled

▶ Concretely, there are different hierarchy levels at which objects can be observed:

Point level

Individual object points (e.g. pixels)
are identified

Part level

Objects are represented through their
individual parts (e.g. a cup has a
container and a handle)

Object level

Objects are represented as a whole
(e.g. through a bounding box)

▶ Each of these hierarchies can be useful for different tasks:

▶ A point-level representation is suitable when specific points of an object are relevant during an
interaction (e.g. the prongs of a fork)

▶ Parts can be useful to look at for task-oriented grasping
▶ An object-level representation aids scene understanding, but is also required for ensuring that actions

are performed on an object of interest

▶ Ideally, the hierarchical levels are used by different skills that can be composed to solve a
specific task

Learning for Robot Manipulation 17 / 44

Object Representations
▶ Objects are often part of the state representation in robot manipulation, but there is no unique

way in which objects themselves are modelled

▶ Concretely, there are different hierarchy levels at which objects can be observed:

Point level

Individual object points (e.g. pixels)
are identified

Part level

Objects are represented through their
individual parts (e.g. a cup has a
container and a handle)

Object level

Objects are represented as a whole
(e.g. through a bounding box)

▶ Each of these hierarchies can be useful for different tasks:

▶ A point-level representation is suitable when specific points of an object are relevant during an
interaction (e.g. the prongs of a fork)

▶ Parts can be useful to look at for task-oriented grasping
▶ An object-level representation aids scene understanding, but is also required for ensuring that actions

are performed on an object of interest

▶ Ideally, the hierarchical levels are used by different skills that can be composed to solve a
specific task

Learning for Robot Manipulation 17 / 44

Passive vs. Interactive Perception

▶ A robot needs to perceive the environment to acquire information about objects and the
overall scene

▶ There are two overall perception strategies depending on whether the robot is simply passively
observing or actively investigating the scene:

Passive perception

A scene is observed passively based on received
sensory data (e.g. camera images)

Interactive perception

A robot performs actions to collect information
about certain environmental aspects (e.g.
touching an object to find out its material)

▶ Many aspects of the environment are not observable using passive perception only (e.g.
the mass of an object), so interactive perception is often essential for successful task completion

Learning for Robot Manipulation 18 / 44

Passive vs. Interactive Perception

▶ A robot needs to perceive the environment to acquire information about objects and the
overall scene

▶ There are two overall perception strategies depending on whether the robot is simply passively
observing or actively investigating the scene:

Passive perception

A scene is observed passively based on received
sensory data (e.g. camera images)

Interactive perception

A robot performs actions to collect information
about certain environmental aspects (e.g.
touching an object to find out its material)

▶ Many aspects of the environment are not observable using passive perception only (e.g.
the mass of an object), so interactive perception is often essential for successful task completion

Learning for Robot Manipulation 18 / 44

Passive vs. Interactive Perception

▶ A robot needs to perceive the environment to acquire information about objects and the
overall scene

▶ There are two overall perception strategies depending on whether the robot is simply passively
observing or actively investigating the scene:

Passive perception

A scene is observed passively based on received
sensory data (e.g. camera images)

Interactive perception

A robot performs actions to collect information
about certain environmental aspects (e.g.
touching an object to find out its material)

▶ Many aspects of the environment are not observable using passive perception only (e.g.
the mass of an object), so interactive perception is often essential for successful task completion

Learning for Robot Manipulation 18 / 44

Passive vs. Interactive Perception

▶ A robot needs to perceive the environment to acquire information about objects and the
overall scene

▶ There are two overall perception strategies depending on whether the robot is simply passively
observing or actively investigating the scene:

Passive perception

A scene is observed passively based on received
sensory data (e.g. camera images)

Interactive perception

A robot performs actions to collect information
about certain environmental aspects (e.g.
touching an object to find out its material)

▶ Many aspects of the environment are not observable using passive perception only (e.g.
the mass of an object), so interactive perception is often essential for successful task completion

Learning for Robot Manipulation 18 / 44

Passive vs. Interactive Perception

▶ A robot needs to perceive the environment to acquire information about objects and the
overall scene

▶ There are two overall perception strategies depending on whether the robot is simply passively
observing or actively investigating the scene:

Passive perception

A scene is observed passively based on received
sensory data (e.g. camera images)

Interactive perception

A robot performs actions to collect information
about certain environmental aspects (e.g.
touching an object to find out its material)

▶ Many aspects of the environment are not observable using passive perception only (e.g.
the mass of an object), so interactive perception is often essential for successful task completion

Learning for Robot Manipulation 18 / 44

Manipulation Policy Learning

Learning for Robot Manipulation 19 / 44

Execution Policies Revisited

▶ In the last lecture, we defined a skill by an execution policy together with initiation and termination
conditions

▶ A policy π : S → A models a robot’s behaviour, and a particularly large effort in robot learning
is put on how to actually acquire such a policy

▶ There are a few general ways in which this can be done:

Reinforcement learning

A policy is learned using direct
interactions with the world

Imitation learning

Learning is done based on expert
observations

Transfer learning

Previously learned policies are used to
guide the learning process

Learning for Robot Manipulation 20 / 44

Execution Policies Revisited

▶ In the last lecture, we defined a skill by an execution policy together with initiation and termination
conditions

▶ A policy π : S → A models a robot’s behaviour, and a particularly large effort in robot learning
is put on how to actually acquire such a policy

▶ There are a few general ways in which this can be done:

Reinforcement learning

A policy is learned using direct
interactions with the world

Imitation learning

Learning is done based on expert
observations

Transfer learning

Previously learned policies are used to
guide the learning process

Learning for Robot Manipulation 20 / 44

Execution Policies Revisited

▶ In the last lecture, we defined a skill by an execution policy together with initiation and termination
conditions

▶ A policy π : S → A models a robot’s behaviour, and a particularly large effort in robot learning
is put on how to actually acquire such a policy

▶ There are a few general ways in which this can be done:

Reinforcement learning

A policy is learned using direct
interactions with the world

Imitation learning

Learning is done based on expert
observations

Transfer learning

Previously learned policies are used to
guide the learning process

Learning for Robot Manipulation 20 / 44

Execution Policies Revisited

▶ In the last lecture, we defined a skill by an execution policy together with initiation and termination
conditions

▶ A policy π : S → A models a robot’s behaviour, and a particularly large effort in robot learning
is put on how to actually acquire such a policy

▶ There are a few general ways in which this can be done:

Reinforcement learning

A policy is learned using direct
interactions with the world

Imitation learning

Learning is done based on expert
observations

Transfer learning

Previously learned policies are used to
guide the learning process

Learning for Robot Manipulation 20 / 44

Execution Policies Revisited

▶ In the last lecture, we defined a skill by an execution policy together with initiation and termination
conditions

▶ A policy π : S → A models a robot’s behaviour, and a particularly large effort in robot learning
is put on how to actually acquire such a policy

▶ There are a few general ways in which this can be done:

Reinforcement learning

A policy is learned using direct
interactions with the world

Imitation learning

Learning is done based on expert
observations

Transfer learning

Previously learned policies are used to
guide the learning process

Learning for Robot Manipulation 20 / 44

Execution Policies Revisited

▶ In the last lecture, we defined a skill by an execution policy together with initiation and termination
conditions

▶ A policy π : S → A models a robot’s behaviour, and a particularly large effort in robot learning
is put on how to actually acquire such a policy

▶ There are a few general ways in which this can be done:

Reinforcement learning

A policy is learned using direct
interactions with the world

Imitation learning

Learning is done based on expert
observations

Transfer learning

Previously learned policies are used to
guide the learning process

Learning for Robot Manipulation 20 / 44

Action Spaces

▶ Execution policies can have a variety of action spaces, which are illustrated below:

...

Cartesian
velocity

...

Cartesian
force

...

Action space
types

...

...

Joint
torques

Controller
parameters

Joint
velocities

▶ Note that policy outputs are typically not directly used as actuator commands, but are processed
by a low-level robot controller

Learning for Robot Manipulation 21 / 44

Policy Representations

Gaussian

process

Nearest

neighbour-based

Locally-weighted

regression

...

Lookup

tables

Basis function

combinations

Neural

networks

Decision

trees

...

Nonparametric

...

Fixed-size
parametric

...

Policy
representations

...

...

Restricted
parametric

...

Goal-based

Linear quadratic

regulators

Dynamic motion

primitives

Gaussian mixture

regression

Learning for Robot Manipulation 22 / 44

Deterministic vs. Stochastic Policies

▶ Regarding how actions are selected from a policy, we can distinguish between deterministic and
stochastic policies

Stochastic policy

Actions are selected by sampling from the
distribution of actions given a state

at ∼ π(a|st)

Deterministic policy

Actions are selected by a deterministic function
of the current state

at = π(st)

Learning for Robot Manipulation 23 / 44

Deterministic vs. Stochastic Policies

▶ Regarding how actions are selected from a policy, we can distinguish between deterministic and
stochastic policies

Stochastic policy

Actions are selected by sampling from the
distribution of actions given a state

at ∼ π(a|st)

Deterministic policy

Actions are selected by a deterministic function
of the current state

at = π(st)

Learning for Robot Manipulation 23 / 44

Deterministic vs. Stochastic Policies

▶ Regarding how actions are selected from a policy, we can distinguish between deterministic and
stochastic policies

Stochastic policy

Actions are selected by sampling from the
distribution of actions given a state

at ∼ π(a|st)

Deterministic policy

Actions are selected by a deterministic function
of the current state

at = π(st)

Learning for Robot Manipulation 23 / 44

Parameterised Policies and Trajectories

▶ In robotics, policies are often represented by parameters θ, so we denote the policy as πθ

▶ A policy is used to define a trajectory (also called episode or rollout)

τ = (s0,a0, s1, ...,an, sn+1)

▶ Given a policy π, the probability of a trajectory can be found to be

Pπ(s0,a0, s1, ...,an, sn+1) = P (s0)
n∏

i=0

Pπ(ai|si)P (si+1|si,ai)

Learning for Robot Manipulation 24 / 44

Parameterised Policies and Trajectories

▶ In robotics, policies are often represented by parameters θ, so we denote the policy as πθ

▶ A policy is used to define a trajectory (also called episode or rollout)

τ = (s0,a0, s1, ...,an, sn+1)

▶ Given a policy π, the probability of a trajectory can be found to be

Pπ(s0,a0, s1, ...,an, sn+1) = P (s0)
n∏

i=0

Pπ(ai|si)P (si+1|si,ai)

Learning for Robot Manipulation 24 / 44

Parameterised Policies and Trajectories

▶ In robotics, policies are often represented by parameters θ, so we denote the policy as πθ

▶ A policy is used to define a trajectory (also called episode or rollout)

τ = (s0,a0, s1, ...,an, sn+1)

▶ Given a policy π, the probability of a trajectory can be found to be

Pπ(s0,a0, s1, ...,an, sn+1) = P (s0)

n∏
i=0

Pπ(ai|si)P (si+1|si,ai)

Learning for Robot Manipulation 24 / 44

Reinforcement Learning Objective

▶ When using reinforcement learning for acquiring a policy, the objective is to find a policy π∗ that
maximises the robot’s expected return:

π∗ = argmax
π

E
τ∼π

[∑
t

r(st,at)

]
= argmax

π

∫
P (τ |π)R(τ)dτ

▶ If we are given a parameterised policy πθ, the learning objective is that of finding a set of
parameters θ∗ that maximise the expected return

θ∗ = argmax
θ

E
τ∼πθ

[∑
t

r(st,at)

]
= argmax

θ

∫
P (τ |πθ)R(τ)dτ

Learning for Robot Manipulation 25 / 44

Reinforcement Learning Objective

▶ When using reinforcement learning for acquiring a policy, the objective is to find a policy π∗ that
maximises the robot’s expected return:

π∗ = argmax
π

E
τ∼π

[∑
t

r(st,at)

]
= argmax

π

∫
P (τ |π)R(τ)dτ

▶ If we are given a parameterised policy πθ, the learning objective is that of finding a set of
parameters θ∗ that maximise the expected return

θ∗ = argmax
θ

E
τ∼πθ

[∑
t

r(st,at)

]
= argmax

θ

∫
P (τ |πθ)R(τ)dτ

Learning for Robot Manipulation 25 / 44

Exploration vs. Exploitation
Reinforcement Learning

▶ During learning, a robot has to balance exploration and exploitation

Exploitation

Acting according to the best policy available to
the robot (so far)

Exploration

Acting by trying out actions that may not be the
most optimal under the current best policy

▶ There is always a trade-off between exploitation and exploration:

▶ if the robot exploits too much too early, it risks converging to a suboptimal policy

▶ the robot’s policy should eventually converge however; too much exploration can prevent that from
happening

Learning for Robot Manipulation 26 / 44

Exploration vs. Exploitation
Reinforcement Learning

▶ During learning, a robot has to balance exploration and exploitation

Exploitation

Acting according to the best policy available to
the robot (so far)

Exploration

Acting by trying out actions that may not be the
most optimal under the current best policy

▶ There is always a trade-off between exploitation and exploration:

▶ if the robot exploits too much too early, it risks converging to a suboptimal policy

▶ the robot’s policy should eventually converge however; too much exploration can prevent that from
happening

Learning for Robot Manipulation 26 / 44

Exploration vs. Exploitation
Reinforcement Learning

▶ During learning, a robot has to balance exploration and exploitation

Exploitation

Acting according to the best policy available to
the robot (so far)

Exploration

Acting by trying out actions that may not be the
most optimal under the current best policy

▶ There is always a trade-off between exploitation and exploration:

▶ if the robot exploits too much too early, it risks converging to a suboptimal policy

▶ the robot’s policy should eventually converge however; too much exploration can prevent that from
happening

Learning for Robot Manipulation 26 / 44

Exploration vs. Exploitation
Reinforcement Learning

▶ During learning, a robot has to balance exploration and exploitation

Exploitation

Acting according to the best policy available to
the robot (so far)

Exploration

Acting by trying out actions that may not be the
most optimal under the current best policy

▶ There is always a trade-off between exploitation and exploration:

▶ if the robot exploits too much too early, it risks converging to a suboptimal policy

▶ the robot’s policy should eventually converge however; too much exploration can prevent that from
happening

Learning for Robot Manipulation 26 / 44

Model-Free Learning
Reinforcement Learning

▶ When learning manipulation policies, a robot usually does not have a transition model (or even a
reward model) of the environment, but has to explore the environment during learning

▶ In such instances, model-free reinforcement learning needs to be used

▶ The model-free learning setup is that we have m trajectories τi, 1 ≤ i ≤ m and the accompanying
rewards along the trajectories, such that an optimal policy has to be found from these
experiences

▶ There are two major families of model-free algorithms:

Temporal difference learning

Performs value / policy updates at every step
(i.e. after the execution of every action)

Monte Carlo learning

Estimates the return from complete trajectories
and then performs value / policy updates

Learning for Robot Manipulation 27 / 44

Model-Free Learning
Reinforcement Learning

▶ When learning manipulation policies, a robot usually does not have a transition model (or even a
reward model) of the environment, but has to explore the environment during learning

▶ In such instances, model-free reinforcement learning needs to be used

▶ The model-free learning setup is that we have m trajectories τi, 1 ≤ i ≤ m and the accompanying
rewards along the trajectories, such that an optimal policy has to be found from these
experiences

▶ There are two major families of model-free algorithms:

Temporal difference learning

Performs value / policy updates at every step
(i.e. after the execution of every action)

Monte Carlo learning

Estimates the return from complete trajectories
and then performs value / policy updates

Learning for Robot Manipulation 27 / 44

Model-Free Learning
Reinforcement Learning

▶ When learning manipulation policies, a robot usually does not have a transition model (or even a
reward model) of the environment, but has to explore the environment during learning

▶ In such instances, model-free reinforcement learning needs to be used

▶ The model-free learning setup is that we have m trajectories τi, 1 ≤ i ≤ m and the accompanying
rewards along the trajectories, such that an optimal policy has to be found from these
experiences

▶ There are two major families of model-free algorithms:

Temporal difference learning

Performs value / policy updates at every step
(i.e. after the execution of every action)

Monte Carlo learning

Estimates the return from complete trajectories
and then performs value / policy updates

Learning for Robot Manipulation 27 / 44

Model-Free Learning
Reinforcement Learning

▶ When learning manipulation policies, a robot usually does not have a transition model (or even a
reward model) of the environment, but has to explore the environment during learning

▶ In such instances, model-free reinforcement learning needs to be used

▶ The model-free learning setup is that we have m trajectories τi, 1 ≤ i ≤ m and the accompanying
rewards along the trajectories, such that an optimal policy has to be found from these
experiences

▶ There are two major families of model-free algorithms:

Temporal difference learning

Performs value / policy updates at every step
(i.e. after the execution of every action)

Monte Carlo learning

Estimates the return from complete trajectories
and then performs value / policy updates

Learning for Robot Manipulation 27 / 44

Model-Free Learning
Reinforcement Learning

▶ When learning manipulation policies, a robot usually does not have a transition model (or even a
reward model) of the environment, but has to explore the environment during learning

▶ In such instances, model-free reinforcement learning needs to be used

▶ The model-free learning setup is that we have m trajectories τi, 1 ≤ i ≤ m and the accompanying
rewards along the trajectories, such that an optimal policy has to be found from these
experiences

▶ There are two major families of model-free algorithms:

Temporal difference learning

Performs value / policy updates at every step
(i.e. after the execution of every action)

Monte Carlo learning

Estimates the return from complete trajectories
and then performs value / policy updates

Learning for Robot Manipulation 27 / 44

Model-Free Learning
Reinforcement Learning

▶ When learning manipulation policies, a robot usually does not have a transition model (or even a
reward model) of the environment, but has to explore the environment during learning

▶ In such instances, model-free reinforcement learning needs to be used

▶ The model-free learning setup is that we have m trajectories τi, 1 ≤ i ≤ m and the accompanying
rewards along the trajectories, such that an optimal policy has to be found from these
experiences

▶ There are two major families of model-free algorithms:

Temporal difference learning

Performs value / policy updates at every step
(i.e. after the execution of every action)

Monte Carlo learning

Estimates the return from complete trajectories
and then performs value / policy updates

Learning for Robot Manipulation 27 / 44

Temporal Difference — TD(λ) — Learning and Q-Learning
Reinforcement Learning

▶ The TD(λ) learning algorithm attempts to bring the value function V (st) closer to the
reward function, while preventing myopic updates

▶ The parameter λ controls the amount of prediction during learning — if λ > 0, older states are
considered during learning

▶ For TD(0), only a single-step prediction is done, with α a learning rate

V (st) = V (st) + α (r(st,at) + γV (st+1)− V (st))

▶ A popular temporal difference RL algorithm is Q-learning, which estimates a state-action value
function Q(st,at)

▶ The Q-learning update rule is given by

Q(st,at) = Q(st,at) + α
(
r(st,at) + γmax

a
Q(st+1,a)−Q(st,at)

)

Learning for Robot Manipulation 28 / 44

Temporal Difference — TD(λ) — Learning and Q-Learning
Reinforcement Learning

▶ The TD(λ) learning algorithm attempts to bring the value function V (st) closer to the
reward function, while preventing myopic updates

▶ The parameter λ controls the amount of prediction during learning — if λ > 0, older states are
considered during learning

▶ For TD(0), only a single-step prediction is done, with α a learning rate

V (st) = V (st) + α (r(st,at) + γV (st+1)− V (st))

▶ A popular temporal difference RL algorithm is Q-learning, which estimates a state-action value
function Q(st,at)

▶ The Q-learning update rule is given by

Q(st,at) = Q(st,at) + α
(
r(st,at) + γmax

a
Q(st+1,a)−Q(st,at)

)

Learning for Robot Manipulation 28 / 44

Temporal Difference — TD(λ) — Learning and Q-Learning
Reinforcement Learning

▶ The TD(λ) learning algorithm attempts to bring the value function V (st) closer to the
reward function, while preventing myopic updates

▶ The parameter λ controls the amount of prediction during learning — if λ > 0, older states are
considered during learning

▶ For TD(0), only a single-step prediction is done, with α a learning rate

V (st) = V (st) + α (r(st,at) + γV (st+1)− V (st))

▶ A popular temporal difference RL algorithm is Q-learning, which estimates a state-action value
function Q(st,at)

▶ The Q-learning update rule is given by

Q(st,at) = Q(st,at) + α
(
r(st,at) + γmax

a
Q(st+1,a)−Q(st,at)

)

Learning for Robot Manipulation 28 / 44

Temporal Difference — TD(λ) — Learning and Q-Learning
Reinforcement Learning

▶ The TD(λ) learning algorithm attempts to bring the value function V (st) closer to the
reward function, while preventing myopic updates

▶ The parameter λ controls the amount of prediction during learning — if λ > 0, older states are
considered during learning

▶ For TD(0), only a single-step prediction is done, with α a learning rate

V (st) = V (st) + α (r(st,at) + γV (st+1)− V (st))

▶ A popular temporal difference RL algorithm is Q-learning, which estimates a state-action value
function Q(st,at)

▶ The Q-learning update rule is given by

Q(st,at) = Q(st,at) + α
(
r(st,at) + γmax

a
Q(st+1,a)−Q(st,at)

)

Learning for Robot Manipulation 28 / 44

Temporal Difference — TD(λ) — Learning and Q-Learning
Reinforcement Learning

▶ The TD(λ) learning algorithm attempts to bring the value function V (st) closer to the
reward function, while preventing myopic updates

▶ The parameter λ controls the amount of prediction during learning — if λ > 0, older states are
considered during learning

▶ For TD(0), only a single-step prediction is done, with α a learning rate

V (st) = V (st) + α (r(st,at) + γV (st+1)− V (st))

▶ A popular temporal difference RL algorithm is Q-learning, which estimates a state-action value
function Q(st,at)

▶ The Q-learning update rule is given by

Q(st,at) = Q(st,at) + α
(
r(st,at) + γmax

a
Q(st+1,a)−Q(st,at)

)
Learning for Robot Manipulation 28 / 44

Deep Q-Learning
Reinforcement Learning

V. Mnih et al. “Human-level Control Through Deep Reinforcement
Learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

▶ Q-learning as seen on the previous slide is defined for
discrete action spaces; however, using a function
approximator (e.g. a neural network), it can be
extended to continuous state spaces

▶ In deep Q-learning, Q-function is represented using a
deep neural network, and the objective function that is
being minimised here is often of the form

L(θ) = E
[
Q(st,at)−

(
r(st,at) + γmax

a
Q(st+1,a)

)]
▶ Q-learning can be fairly unstable when a neural network

is used to represent the value function (and may not even
converge) — but there are practical tricks to improve the
convergence

Learning for Robot Manipulation 29 / 44

Deep Q-Learning
Reinforcement Learning

V. Mnih et al. “Human-level Control Through Deep Reinforcement
Learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

▶ Q-learning as seen on the previous slide is defined for
discrete action spaces; however, using a function
approximator (e.g. a neural network), it can be
extended to continuous state spaces

▶ In deep Q-learning, Q-function is represented using a
deep neural network, and the objective function that is
being minimised here is often of the form

L(θ) = E
[
Q(st,at)−

(
r(st,at) + γmax

a
Q(st+1,a)

)]

▶ Q-learning can be fairly unstable when a neural network
is used to represent the value function (and may not even
converge) — but there are practical tricks to improve the
convergence

Learning for Robot Manipulation 29 / 44

Deep Q-Learning
Reinforcement Learning

V. Mnih et al. “Human-level Control Through Deep Reinforcement
Learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

▶ Q-learning as seen on the previous slide is defined for
discrete action spaces; however, using a function
approximator (e.g. a neural network), it can be
extended to continuous state spaces

▶ In deep Q-learning, Q-function is represented using a
deep neural network, and the objective function that is
being minimised here is often of the form

L(θ) = E
[
Q(st,at)−

(
r(st,at) + γmax

a
Q(st+1,a)

)]
▶ Q-learning can be fairly unstable when a neural network

is used to represent the value function (and may not even
converge) — but there are practical tricks to improve the
convergence

Learning for Robot Manipulation 29 / 44

Policy Search
Reinforcement Learning

▶ Value-based algorithms, such as TD(λ) and Q-learning, derive the policy from the value function

▶ Policy search circumvents the need for the value function by optimising in the policy space
directly

▶ Policy search algorithms are useful in robotics since they allow incorporating prior
knowledge about the policy

Learning for Robot Manipulation 30 / 44

Policy Search
Reinforcement Learning

▶ Value-based algorithms, such as TD(λ) and Q-learning, derive the policy from the value function

▶ Policy search circumvents the need for the value function by optimising in the policy space
directly

▶ Policy search algorithms are useful in robotics since they allow incorporating prior
knowledge about the policy

Learning for Robot Manipulation 30 / 44

Policy Search
Reinforcement Learning

▶ Value-based algorithms, such as TD(λ) and Q-learning, derive the policy from the value function

▶ Policy search circumvents the need for the value function by optimising in the policy space
directly

▶ Policy search algorithms are useful in robotics since they allow incorporating prior
knowledge about the policy

Learning for Robot Manipulation 30 / 44

Policy Gradients
Reinforcement Learning

▶ Policy gradient methods represent one popular family of policy search

▶ Given a parameterised policy πθ, a policy gradient algorithm estimates the gradient of the
expected return and modifies the parameters θ using the update rule

θ ← θ +∇J(θ) = θ +∇
∫

R(τ)P (τ |θ)dτ

▶ Policy gradient algorithms often make use of the so-called likelihood ratio trick

∇θP (τ |θ) = P (τ |θ)∇θ logP (τ |θ)

while estimating the gradient of J

Learning for Robot Manipulation 31 / 44

Policy Gradients
Reinforcement Learning

▶ Policy gradient methods represent one popular family of policy search

▶ Given a parameterised policy πθ, a policy gradient algorithm estimates the gradient of the
expected return and modifies the parameters θ using the update rule

θ ← θ +∇J(θ) = θ +∇
∫

R(τ)P (τ |θ)dτ

▶ Policy gradient algorithms often make use of the so-called likelihood ratio trick

∇θP (τ |θ) = P (τ |θ)∇θ logP (τ |θ)

while estimating the gradient of J

Learning for Robot Manipulation 31 / 44

Policy Gradients
Reinforcement Learning

▶ Policy gradient methods represent one popular family of policy search

▶ Given a parameterised policy πθ, a policy gradient algorithm estimates the gradient of the
expected return and modifies the parameters θ using the update rule

θ ← θ +∇J(θ) = θ +∇
∫

R(τ)P (τ |θ)dτ

▶ Policy gradient algorithms often make use of the so-called likelihood ratio trick

∇θP (τ |θ) = P (τ |θ)∇θ logP (τ |θ)

while estimating the gradient of J

Learning for Robot Manipulation 31 / 44

REINFORCE Algorithm
Reinforcement Learning

▶ REINFORCE is an algorithm that forms the backbone of many
practically used policy gradient algorithms

▶ The algorithm was originally formulated for neural
network-based policies, but its general formulation is
applicable to any differentiable policy

▶ A high-level overview of the algorithm is shown on the right

1: Initialise θ randomly
2: for i ← 1 to N do
3: T ← {}
4: for j ← 1 to M do
5: τ ← sample(πθ)
6: T ← T ∪ τ
7: Jθ ← 1

M

∑M
j=1

∑
t r

j
t

8: θ ← θ +∇Jθ

Learning for Robot Manipulation 32 / 44

Actor-Critic Learning
Reinforcement Learning

▶ Value-based algorithms can be referred to as critic-based, while policy search algorithm are also
called actor-based

▶ A combination of the two also exists — this forms the so-called actor-critic family of RL
algorithms, which estimate the value function and maintain a policy at the same time

▶ Actor-critic algorithms make use of a baseline b when estimating the gradient of J

∇θJ(θ) = E

[
T∑

i=0

∇θ logPθ(at|st)(Rt − bt)

]

▶ The benefit of actor-critic algorithms is that the variance of policy updates is reduced

Learning for Robot Manipulation 33 / 44

Actor-Critic Learning
Reinforcement Learning

▶ Value-based algorithms can be referred to as critic-based, while policy search algorithm are also
called actor-based

▶ A combination of the two also exists — this forms the so-called actor-critic family of RL
algorithms, which estimate the value function and maintain a policy at the same time

▶ Actor-critic algorithms make use of a baseline b when estimating the gradient of J

∇θJ(θ) = E

[
T∑

i=0

∇θ logPθ(at|st)(Rt − bt)

]

▶ The benefit of actor-critic algorithms is that the variance of policy updates is reduced

Learning for Robot Manipulation 33 / 44

Actor-Critic Learning
Reinforcement Learning

▶ Value-based algorithms can be referred to as critic-based, while policy search algorithm are also
called actor-based

▶ A combination of the two also exists — this forms the so-called actor-critic family of RL
algorithms, which estimate the value function and maintain a policy at the same time

▶ Actor-critic algorithms make use of a baseline b when estimating the gradient of J

∇θJ(θ) = E

[
T∑

i=0

∇θ logPθ(at|st)(Rt − bt)

]

▶ The benefit of actor-critic algorithms is that the variance of policy updates is reduced

Learning for Robot Manipulation 33 / 44

Actor-Critic Learning
Reinforcement Learning

▶ Value-based algorithms can be referred to as critic-based, while policy search algorithm are also
called actor-based

▶ A combination of the two also exists — this forms the so-called actor-critic family of RL
algorithms, which estimate the value function and maintain a policy at the same time

▶ Actor-critic algorithms make use of a baseline b when estimating the gradient of J

∇θJ(θ) = E

[
T∑

i=0

∇θ logPθ(at|st)(Rt − bt)

]

▶ The benefit of actor-critic algorithms is that the variance of policy updates is reduced

Learning for Robot Manipulation 33 / 44

Proximal Policy Optimisation (PPO)
Reinforcement Learning

▶ PPO is a policy gradient algorithm that is often used as a baseline method in learning problems

▶ The optimisation objective of PPO is maximising

L(θ) = E [min (qt(θ)Aθ(s,a), clip (qt(θ), 1− ϵ, 1 + ϵ)Aθ(s,a))]

for a small ϵ where Aθ is called the advantage function

A(s,a) = Q(s,a)− V (s)

and

qt(θ) =
πθ(a|s)
πθold

(a|s)
clip(x, y, z) =

 y if x < y
z if x > z
x otherwise

▶ PPO maintains a (deep) policy network (thus it is considered a deep RL algorithm) and tries to
limit the amount by which the policy is updated

Learning for Robot Manipulation 34 / 44

Proximal Policy Optimisation (PPO)
Reinforcement Learning

▶ PPO is a policy gradient algorithm that is often used as a baseline method in learning problems

▶ The optimisation objective of PPO is maximising

L(θ) = E [min (qt(θ)Aθ(s,a), clip (qt(θ), 1− ϵ, 1 + ϵ)Aθ(s,a))]

for a small ϵ where Aθ is called the advantage function

A(s,a) = Q(s,a)− V (s)

and

qt(θ) =
πθ(a|s)
πθold

(a|s)
clip(x, y, z) =

 y if x < y
z if x > z
x otherwise

▶ PPO maintains a (deep) policy network (thus it is considered a deep RL algorithm) and tries to
limit the amount by which the policy is updated

Learning for Robot Manipulation 34 / 44

Proximal Policy Optimisation (PPO)
Reinforcement Learning

▶ PPO is a policy gradient algorithm that is often used as a baseline method in learning problems

▶ The optimisation objective of PPO is maximising

L(θ) = E [min (qt(θ)Aθ(s,a), clip (qt(θ), 1− ϵ, 1 + ϵ)Aθ(s,a))]

for a small ϵ where Aθ is called the advantage function

A(s,a) = Q(s,a)− V (s)

and

qt(θ) =
πθ(a|s)
πθold

(a|s)
clip(x, y, z) =

 y if x < y
z if x > z
x otherwise

▶ PPO maintains a (deep) policy network (thus it is considered a deep RL algorithm) and tries to
limit the amount by which the policy is updated

Learning for Robot Manipulation 34 / 44

Proximal Policy Optimisation (PPO)
Reinforcement Learning

▶ PPO is a policy gradient algorithm that is often used as a baseline method in learning problems

▶ The optimisation objective of PPO is maximising

L(θ) = E [min (qt(θ)Aθ(s,a), clip (qt(θ), 1− ϵ, 1 + ϵ)Aθ(s,a))]

for a small ϵ where Aθ is called the advantage function

A(s,a) = Q(s,a)− V (s)

and

qt(θ) =
πθ(a|s)
πθold

(a|s)

clip(x, y, z) =

 y if x < y
z if x > z
x otherwise

▶ PPO maintains a (deep) policy network (thus it is considered a deep RL algorithm) and tries to
limit the amount by which the policy is updated

Learning for Robot Manipulation 34 / 44

Proximal Policy Optimisation (PPO)
Reinforcement Learning

▶ PPO is a policy gradient algorithm that is often used as a baseline method in learning problems

▶ The optimisation objective of PPO is maximising

L(θ) = E [min (qt(θ)Aθ(s,a), clip (qt(θ), 1− ϵ, 1 + ϵ)Aθ(s,a))]

for a small ϵ where Aθ is called the advantage function

A(s,a) = Q(s,a)− V (s)

and

qt(θ) =
πθ(a|s)
πθold

(a|s)
clip(x, y, z) =

 y if x < y
z if x > z
x otherwise

▶ PPO maintains a (deep) policy network (thus it is considered a deep RL algorithm) and tries to
limit the amount by which the policy is updated

Learning for Robot Manipulation 34 / 44

Proximal Policy Optimisation (PPO)
Reinforcement Learning

▶ PPO is a policy gradient algorithm that is often used as a baseline method in learning problems

▶ The optimisation objective of PPO is maximising

L(θ) = E [min (qt(θ)Aθ(s,a), clip (qt(θ), 1− ϵ, 1 + ϵ)Aθ(s,a))]

for a small ϵ where Aθ is called the advantage function

A(s,a) = Q(s,a)− V (s)

and

qt(θ) =
πθ(a|s)
πθold

(a|s)
clip(x, y, z) =

 y if x < y
z if x > z
x otherwise

▶ PPO maintains a (deep) policy network (thus it is considered a deep RL algorithm) and tries to
limit the amount by which the policy is updated

Learning for Robot Manipulation 34 / 44

Imitation Learning

▶ In reinforcement learning, a robot needs to interact with its environment (either in the real
world or in a simulation) so that it can identify an appropriate execution policy

▶ If an expert is available that can show the desired behaviour, a more appropriate way is to perform
imitation learning

▶ There are various techniques to perform imitation learning:

Behaviour cloning

An expert policy is mimicked directly
based on observed states and actions

Inverse reinforcement learning

Expert demonstrations are used for
extracting a reward function

Learning from observation

A policy is learned from raw
observations, without explicit state
and action labels

Learning for Robot Manipulation 35 / 44

Imitation Learning

▶ In reinforcement learning, a robot needs to interact with its environment (either in the real
world or in a simulation) so that it can identify an appropriate execution policy

▶ If an expert is available that can show the desired behaviour, a more appropriate way is to perform
imitation learning

▶ There are various techniques to perform imitation learning:

Behaviour cloning

An expert policy is mimicked directly
based on observed states and actions

Inverse reinforcement learning

Expert demonstrations are used for
extracting a reward function

Learning from observation

A policy is learned from raw
observations, without explicit state
and action labels

Learning for Robot Manipulation 35 / 44

Imitation Learning

▶ In reinforcement learning, a robot needs to interact with its environment (either in the real
world or in a simulation) so that it can identify an appropriate execution policy

▶ If an expert is available that can show the desired behaviour, a more appropriate way is to perform
imitation learning

▶ There are various techniques to perform imitation learning:

Behaviour cloning

An expert policy is mimicked directly
based on observed states and actions

Inverse reinforcement learning

Expert demonstrations are used for
extracting a reward function

Learning from observation

A policy is learned from raw
observations, without explicit state
and action labels

Learning for Robot Manipulation 35 / 44

Imitation Learning

▶ In reinforcement learning, a robot needs to interact with its environment (either in the real
world or in a simulation) so that it can identify an appropriate execution policy

▶ If an expert is available that can show the desired behaviour, a more appropriate way is to perform
imitation learning

▶ There are various techniques to perform imitation learning:

Behaviour cloning

An expert policy is mimicked directly
based on observed states and actions

Inverse reinforcement learning

Expert demonstrations are used for
extracting a reward function

Learning from observation

A policy is learned from raw
observations, without explicit state
and action labels

Learning for Robot Manipulation 35 / 44

Imitation Learning

▶ In reinforcement learning, a robot needs to interact with its environment (either in the real
world or in a simulation) so that it can identify an appropriate execution policy

▶ If an expert is available that can show the desired behaviour, a more appropriate way is to perform
imitation learning

▶ There are various techniques to perform imitation learning:

Behaviour cloning

An expert policy is mimicked directly
based on observed states and actions

Inverse reinforcement learning

Expert demonstrations are used for
extracting a reward function

Learning from observation

A policy is learned from raw
observations, without explicit state
and action labels

Learning for Robot Manipulation 35 / 44

Imitation Learning

▶ In reinforcement learning, a robot needs to interact with its environment (either in the real
world or in a simulation) so that it can identify an appropriate execution policy

▶ If an expert is available that can show the desired behaviour, a more appropriate way is to perform
imitation learning

▶ There are various techniques to perform imitation learning:

Behaviour cloning

An expert policy is mimicked directly
based on observed states and actions

Inverse reinforcement learning

Expert demonstrations are used for
extracting a reward function

Learning from observation

A policy is learned from raw
observations, without explicit state
and action labels

Learning for Robot Manipulation 35 / 44

Behaviour Cloning
Imitation Learning

▶ The simplest way to perform imitation learning is to copy the actions performed by the
demonstrator, an approach known as behaviour cloning

▶ In behaviour cloning, we are given a set of c observations X = {(si,ai)} , 1 ≤ i ≤ c that specifies
states and ground-truth actions taken by an expert demonstrator

▶ Given such a dataset, supervised learning can be used to acquire a policy

▶ A policy learned using behaviour cloning can be further improved using reinforcement learning,
but also using corrective demonstrations

Learning for Robot Manipulation 36 / 44

Behaviour Cloning
Imitation Learning

▶ The simplest way to perform imitation learning is to copy the actions performed by the
demonstrator, an approach known as behaviour cloning

▶ In behaviour cloning, we are given a set of c observations X = {(si,ai)} , 1 ≤ i ≤ c that specifies
states and ground-truth actions taken by an expert demonstrator

▶ Given such a dataset, supervised learning can be used to acquire a policy

▶ A policy learned using behaviour cloning can be further improved using reinforcement learning,
but also using corrective demonstrations

Learning for Robot Manipulation 36 / 44

Behaviour Cloning
Imitation Learning

▶ The simplest way to perform imitation learning is to copy the actions performed by the
demonstrator, an approach known as behaviour cloning

▶ In behaviour cloning, we are given a set of c observations X = {(si,ai)} , 1 ≤ i ≤ c that specifies
states and ground-truth actions taken by an expert demonstrator

▶ Given such a dataset, supervised learning can be used to acquire a policy

▶ A policy learned using behaviour cloning can be further improved using reinforcement learning,
but also using corrective demonstrations

Learning for Robot Manipulation 36 / 44

Behaviour Cloning
Imitation Learning

▶ The simplest way to perform imitation learning is to copy the actions performed by the
demonstrator, an approach known as behaviour cloning

▶ In behaviour cloning, we are given a set of c observations X = {(si,ai)} , 1 ≤ i ≤ c that specifies
states and ground-truth actions taken by an expert demonstrator

▶ Given such a dataset, supervised learning can be used to acquire a policy

▶ A policy learned using behaviour cloning can be further improved using reinforcement learning,
but also using corrective demonstrations

Learning for Robot Manipulation 36 / 44

Inverse Reinforcement Learning
Imitation Learning

▶ Another way in which expert demonstrations can be utilised is for extracting a reward function
— this is the approach taken by inverse reinforcement learning (aka reward inference)

▶ The reward in inverse RL is typically represented as a (linear) combination of features that can
be observed

▶ Such a reward function can then be used to do reinforcement learning

▶ Inverse RL is usually performed as an iterative process that has an outer loop for reward extraction
(based on some optimisation metric) and an inner loop for policy learning

▶ Inverse RL is challenging because the problem is ill-defined — there can be many possible reward
functions that optimise the metric

Learning for Robot Manipulation 37 / 44

Inverse Reinforcement Learning
Imitation Learning

▶ Another way in which expert demonstrations can be utilised is for extracting a reward function
— this is the approach taken by inverse reinforcement learning (aka reward inference)

▶ The reward in inverse RL is typically represented as a (linear) combination of features that can
be observed

▶ Such a reward function can then be used to do reinforcement learning

▶ Inverse RL is usually performed as an iterative process that has an outer loop for reward extraction
(based on some optimisation metric) and an inner loop for policy learning

▶ Inverse RL is challenging because the problem is ill-defined — there can be many possible reward
functions that optimise the metric

Learning for Robot Manipulation 37 / 44

Inverse Reinforcement Learning
Imitation Learning

▶ Another way in which expert demonstrations can be utilised is for extracting a reward function
— this is the approach taken by inverse reinforcement learning (aka reward inference)

▶ The reward in inverse RL is typically represented as a (linear) combination of features that can
be observed

▶ Such a reward function can then be used to do reinforcement learning

▶ Inverse RL is usually performed as an iterative process that has an outer loop for reward extraction
(based on some optimisation metric) and an inner loop for policy learning

▶ Inverse RL is challenging because the problem is ill-defined — there can be many possible reward
functions that optimise the metric

Learning for Robot Manipulation 37 / 44

Inverse Reinforcement Learning
Imitation Learning

▶ Another way in which expert demonstrations can be utilised is for extracting a reward function
— this is the approach taken by inverse reinforcement learning (aka reward inference)

▶ The reward in inverse RL is typically represented as a (linear) combination of features that can
be observed

▶ Such a reward function can then be used to do reinforcement learning

▶ Inverse RL is usually performed as an iterative process that has an outer loop for reward extraction
(based on some optimisation metric) and an inner loop for policy learning

▶ Inverse RL is challenging because the problem is ill-defined — there can be many possible reward
functions that optimise the metric

Learning for Robot Manipulation 37 / 44

Policy Transfer

▶ One additional strategy in which a policy π for a new task Tj can be acquired is to reuse a policy
πT∗

i that has already been learned for a different task Ti, i ̸= j

▶ πT∗
i can be used either directly for Tj or, more frequently, fine-tuned for Tj

▶ This can also be achieved using a variety of strategies, which we will not discuss in further detail in
this lecture

...

Skill reuse

...

Skill
parameterisation

...

Policy transfer
strategies

...

...

Meta learning

...

Domain
adaptation

Learning for Robot Manipulation 38 / 44

Policy Transfer

▶ One additional strategy in which a policy π for a new task Tj can be acquired is to reuse a policy
πT∗

i that has already been learned for a different task Ti, i ̸= j

▶ πT∗
i can be used either directly for Tj or, more frequently, fine-tuned for Tj

▶ This can also be achieved using a variety of strategies, which we will not discuss in further detail in
this lecture

...

Skill reuse

...

Skill
parameterisation

...

Policy transfer
strategies

...

...

Meta learning

...

Domain
adaptation

Learning for Robot Manipulation 38 / 44

Policy Transfer

▶ One additional strategy in which a policy π for a new task Tj can be acquired is to reuse a policy
πT∗

i that has already been learned for a different task Ti, i ̸= j

▶ πT∗
i can be used either directly for Tj or, more frequently, fine-tuned for Tj

▶ This can also be achieved using a variety of strategies, which we will not discuss in further detail in
this lecture

...

Skill reuse

...

Skill
parameterisation

...

Policy transfer
strategies

...

...

Meta learning

...

Domain
adaptation

Learning for Robot Manipulation 38 / 44

Policy Transfer

▶ One additional strategy in which a policy π for a new task Tj can be acquired is to reuse a policy
πT∗

i that has already been learned for a different task Ti, i ̸= j

▶ πT∗
i can be used either directly for Tj or, more frequently, fine-tuned for Tj

▶ This can also be achieved using a variety of strategies, which we will not discuss in further detail in
this lecture

...

Skill reuse

...

Skill
parameterisation

...

Policy transfer
strategies

...

...

Meta learning

...

Domain
adaptation

Learning for Robot Manipulation 38 / 44

Skill Learning

▶ In this section, we only discussed the aspect of learning a policy

▶ In the previous lecture, we defined a complete skill as S = (SI ,ST , π), namely a skill also has
initiation and termination conditions — what about those, you might ask?

▶ The aspect of learning the initiation conditions (preconditions) and the termination condition is left
out on purpose; this will be discussed in a dedicated session later in the course

Learning for Robot Manipulation 39 / 44

Transition Model Learning

Learning for Robot Manipulation 40 / 44

Transition Models for State Prediction

S. Elliott and M. Cakmak, ”Robotic Cleaning Through Dirt Rearrangement
Planning with Learned Transition Models,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2018, pp. 1623–1630.

▶ As a robot can affect its environment with its own
actions, it can be useful for it to know how
those actions affect the state before committing
to specific actions

▶ Prediction is also useful when a robot co-exists
with other agents

▶ A transition model T enables such predictions
about the state evolution as a result of executed
actions to be created

▶ Depending on the nature of the predictive process,
we can distinguish between two types of transition
models:

Deterministic transition model

T : S ×A→ S

Probabilistic transition model

T : S ×A× S → R

Learning for Robot Manipulation 41 / 44

Transition Models for State Prediction

S. Elliott and M. Cakmak, ”Robotic Cleaning Through Dirt Rearrangement
Planning with Learned Transition Models,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2018, pp. 1623–1630.

▶ As a robot can affect its environment with its own
actions, it can be useful for it to know how
those actions affect the state before committing
to specific actions

▶ Prediction is also useful when a robot co-exists
with other agents

▶ A transition model T enables such predictions
about the state evolution as a result of executed
actions to be created

▶ Depending on the nature of the predictive process,
we can distinguish between two types of transition
models:

Deterministic transition model

T : S ×A→ S

Probabilistic transition model

T : S ×A× S → R

Learning for Robot Manipulation 41 / 44

Transition Models for State Prediction

S. Elliott and M. Cakmak, ”Robotic Cleaning Through Dirt Rearrangement
Planning with Learned Transition Models,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2018, pp. 1623–1630.

▶ As a robot can affect its environment with its own
actions, it can be useful for it to know how
those actions affect the state before committing
to specific actions

▶ Prediction is also useful when a robot co-exists
with other agents

▶ A transition model T enables such predictions
about the state evolution as a result of executed
actions to be created

▶ Depending on the nature of the predictive process,
we can distinguish between two types of transition
models:

Deterministic transition model

T : S ×A→ S

Probabilistic transition model

T : S ×A× S → R

Learning for Robot Manipulation 41 / 44

Transition Models for State Prediction

S. Elliott and M. Cakmak, ”Robotic Cleaning Through Dirt Rearrangement
Planning with Learned Transition Models,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2018, pp. 1623–1630.

▶ As a robot can affect its environment with its own
actions, it can be useful for it to know how
those actions affect the state before committing
to specific actions

▶ Prediction is also useful when a robot co-exists
with other agents

▶ A transition model T enables such predictions
about the state evolution as a result of executed
actions to be created

▶ Depending on the nature of the predictive process,
we can distinguish between two types of transition
models:

Deterministic transition model

T : S ×A→ S

Probabilistic transition model

T : S ×A× S → R

Learning for Robot Manipulation 41 / 44

Transition Models for State Prediction

S. Elliott and M. Cakmak, ”Robotic Cleaning Through Dirt Rearrangement
Planning with Learned Transition Models,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2018, pp. 1623–1630.

▶ As a robot can affect its environment with its own
actions, it can be useful for it to know how
those actions affect the state before committing
to specific actions

▶ Prediction is also useful when a robot co-exists
with other agents

▶ A transition model T enables such predictions
about the state evolution as a result of executed
actions to be created

▶ Depending on the nature of the predictive process,
we can distinguish between two types of transition
models:

Deterministic transition model

T : S ×A→ S

Probabilistic transition model

T : S ×A× S → R

Learning for Robot Manipulation 41 / 44

Transition Models for State Prediction

S. Elliott and M. Cakmak, ”Robotic Cleaning Through Dirt Rearrangement
Planning with Learned Transition Models,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2018, pp. 1623–1630.

▶ As a robot can affect its environment with its own
actions, it can be useful for it to know how
those actions affect the state before committing
to specific actions

▶ Prediction is also useful when a robot co-exists
with other agents

▶ A transition model T enables such predictions
about the state evolution as a result of executed
actions to be created

▶ Depending on the nature of the predictive process,
we can distinguish between two types of transition
models:

Deterministic transition model

T : S ×A→ S

Probabilistic transition model

T : S ×A× S → R

Learning for Robot Manipulation 41 / 44

Discrete and Continuous Transition Models

▶ There are two types of predictive models based on the nature of the state variables to be predicted:

Continuous predictive model

Used for predicting the evolution of continuous
state variables

Discrete predictive model

Used when the state space can be discretised
(e.g. using a symbolic representation)

▶ Discrete and continuous transition models can be combined in a hybrid model to enable the
representation of different manipulation modes

▶ Here, a discrete model is used to predict mode transitions
▶ A continuous model is used to predict state variables within a mode

Learning for Robot Manipulation 42 / 44

Discrete and Continuous Transition Models

▶ There are two types of predictive models based on the nature of the state variables to be predicted:

Continuous predictive model

Used for predicting the evolution of continuous
state variables

Discrete predictive model

Used when the state space can be discretised
(e.g. using a symbolic representation)

▶ Discrete and continuous transition models can be combined in a hybrid model to enable the
representation of different manipulation modes

▶ Here, a discrete model is used to predict mode transitions
▶ A continuous model is used to predict state variables within a mode

Learning for Robot Manipulation 42 / 44

Discrete and Continuous Transition Models

▶ There are two types of predictive models based on the nature of the state variables to be predicted:

Continuous predictive model

Used for predicting the evolution of continuous
state variables

Discrete predictive model

Used when the state space can be discretised
(e.g. using a symbolic representation)

▶ Discrete and continuous transition models can be combined in a hybrid model to enable the
representation of different manipulation modes

▶ Here, a discrete model is used to predict mode transitions
▶ A continuous model is used to predict state variables within a mode

Learning for Robot Manipulation 42 / 44

Discrete and Continuous Transition Models

▶ There are two types of predictive models based on the nature of the state variables to be predicted:

Continuous predictive model

Used for predicting the evolution of continuous
state variables

Discrete predictive model

Used when the state space can be discretised
(e.g. using a symbolic representation)

▶ Discrete and continuous transition models can be combined in a hybrid model to enable the
representation of different manipulation modes

▶ Here, a discrete model is used to predict mode transitions
▶ A continuous model is used to predict state variables within a mode

Learning for Robot Manipulation 42 / 44

Model Uncertainty

▶ Probabilistic transition models have an associated uncertainty that stems from the fact that a
robot does not have perfect knowledge about the process to be predicted

▶ In this context, we need to distinguish between two sources of uncertainty:

Aleatoric uncertainty

Inherent uncertainty in the process

Epistemic uncertainty

Uncertainty due to a lack of process knowledge

▶ Epistemic uncertainty can be minimised with more training data (or with interactive
perception); this is not the case with aleatoric uncertainty, where more data cannot help

Learning for Robot Manipulation 43 / 44

Model Uncertainty

▶ Probabilistic transition models have an associated uncertainty that stems from the fact that a
robot does not have perfect knowledge about the process to be predicted

▶ In this context, we need to distinguish between two sources of uncertainty:

Aleatoric uncertainty

Inherent uncertainty in the process

Epistemic uncertainty

Uncertainty due to a lack of process knowledge

▶ Epistemic uncertainty can be minimised with more training data (or with interactive
perception); this is not the case with aleatoric uncertainty, where more data cannot help

Learning for Robot Manipulation 43 / 44

Model Uncertainty

▶ Probabilistic transition models have an associated uncertainty that stems from the fact that a
robot does not have perfect knowledge about the process to be predicted

▶ In this context, we need to distinguish between two sources of uncertainty:

Aleatoric uncertainty

Inherent uncertainty in the process

Epistemic uncertainty

Uncertainty due to a lack of process knowledge

▶ Epistemic uncertainty can be minimised with more training data (or with interactive
perception); this is not the case with aleatoric uncertainty, where more data cannot help

Learning for Robot Manipulation 43 / 44

Model Uncertainty

▶ Probabilistic transition models have an associated uncertainty that stems from the fact that a
robot does not have perfect knowledge about the process to be predicted

▶ In this context, we need to distinguish between two sources of uncertainty:

Aleatoric uncertainty

Inherent uncertainty in the process

Epistemic uncertainty

Uncertainty due to a lack of process knowledge

▶ Epistemic uncertainty can be minimised with more training data (or with interactive
perception); this is not the case with aleatoric uncertainty, where more data cannot help

Learning for Robot Manipulation 43 / 44

Model Uncertainty

▶ Probabilistic transition models have an associated uncertainty that stems from the fact that a
robot does not have perfect knowledge about the process to be predicted

▶ In this context, we need to distinguish between two sources of uncertainty:

Aleatoric uncertainty

Inherent uncertainty in the process

Epistemic uncertainty

Uncertainty due to a lack of process knowledge

▶ Epistemic uncertainty can be minimised with more training data (or with interactive
perception); this is not the case with aleatoric uncertainty, where more data cannot help

Learning for Robot Manipulation 43 / 44

Inverse Models

▶ Predictive models as discussed so far are often called forward models

▶ In some cases, it can be useful to know how the state was changed in a particular way (e.g.
when observing other agents performing tasks and only the state is observable)

▶ An inverse model makes a prediction of the action that is performed so that a certain state
transition occurs

T −1 : S × S → A

▶ Inverse models can be learned similarly to predictive models

Learning for Robot Manipulation 44 / 44

Inverse Models

▶ Predictive models as discussed so far are often called forward models

▶ In some cases, it can be useful to know how the state was changed in a particular way (e.g.
when observing other agents performing tasks and only the state is observable)

▶ An inverse model makes a prediction of the action that is performed so that a certain state
transition occurs

T −1 : S × S → A

▶ Inverse models can be learned similarly to predictive models

Learning for Robot Manipulation 44 / 44

Inverse Models

▶ Predictive models as discussed so far are often called forward models

▶ In some cases, it can be useful to know how the state was changed in a particular way (e.g.
when observing other agents performing tasks and only the state is observable)

▶ An inverse model makes a prediction of the action that is performed so that a certain state
transition occurs

T −1 : S × S → A

▶ Inverse models can be learned similarly to predictive models

Learning for Robot Manipulation 44 / 44

Inverse Models

▶ Predictive models as discussed so far are often called forward models

▶ In some cases, it can be useful to know how the state was changed in a particular way (e.g.
when observing other agents performing tasks and only the state is observable)

▶ An inverse model makes a prediction of the action that is performed so that a certain state
transition occurs

T −1 : S × S → A

▶ Inverse models can be learned similarly to predictive models

Learning for Robot Manipulation 44 / 44

