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▶ Motivation behind inverse reinforcement learning

▶ Reminder: Mathematical optimisation

▶ Inverse reinforcement learning methods
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Motivation
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Reward Functions in Reinforcement Learning

▶ Recall that, in our discussion on robot learning (for manipulation), we defined a task family of t
tasks as a collection of Markov decision processes (MDPs):

P (M) = {(Si, A, Ti, Ri, Ci, γ) | 1 ≤ i ≤ t}

▶ One MDP element that is essential for successful reinforcement learning is the reward function

▶ The RL learning objective is that of maximising the expected return E
[∑

t ri,t (st,at)
]

▶ But defining a good reward function, aka reward engineering, is a challenging problem

▶ Learning with sparse rewards, on the other hand, is typically sample inefficient

▶ The challenges of reward engineering stem from multiple conceptual questions:

▶ How should we come up with reward functions?

▶ What makes a good reward function?

▶ (Why) Do we need reward functions in the first place?
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Reward Function Composition Example

▶ Suppose that we want to learn a policy for grasping objects

▶ A reward function for this problem may be written as a linear combination of the form

R(st,at) = w11grasp + w21drop + w31collision + w4∥v∥ + w5

A large positive term

for grasping the object

A large negative term

for dropping the object

A negative term for every

collision with another object

A negative term that

increases with increasing speed

A negative term for

every additional time step

▶ As you may imagine, coming up with such a reward is a rather involved and sometimes
seemingly arbitrary process

▶ Setting the weights is particularly challenging — the learning process can be very sensitive to those
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Learning from Experts

▶ A few lectures ago, we looked at learning from demonstrations, which enables a robot to learn
given expert data

▶ The setting in which learning is done based on an expert is sometimes referred to as
apprenticeship learning

▶ In our previous lecture, we only looked at learning from demonstration for learning execution
policies, but why not use demonstrations to learn reward functions?

▶ The problem of extracting a reward function from expert demonstrations is called inverse
reinforcement learning
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Why Do We Need Rewards?

▶ When learning from expert demonstrations, we can decide not to bother with a reward function
and simply learn the policy that a person is following

▶ This is reasonable if we want a robot to learn how to perform a particular problem, but does not
lead to a representation that is transferrable to different — even related — problems

▶ By acquiring a policy, we learn what to do and how, but not why something is done

▶ The behaviour of a robot that follows a given reward function is also (conceptually) more
straightforward to understand than the behaviour of a robot that simply follows a given policy

“The reward function should usually be a simple monotonic function of the current sensory inputs, and
thus may be much simpler than the direct decision mapping itself. That is, the most compact and

hence robustly learnable representation of expert behavior may be the reward function.” (Russell, 1998)
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What Makes a Good Reward Function?

There are various properties that are desirable for reward functions

Consistency

A reward function should be representative of the
knowledge that is implicitly provided by the
demonstrations — the reward should be
consistent with the expert demonstrations

Simplicity

Occam’s razor is a commonly applied principle in
machine learning and applies to the problem of
defining rewards as well — a reward should be as
simple as possible

Generalisability

A reward function should be defined so that it is
not only applicable for a single problem setting,
but so that it is robust to changes in the setting
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Reminder: Mathematical Optimisation
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Mathematical Optimisation

▶ Unconstrained optimisation problems are often relatively simple to solve (e.g. using Newton’s
method or gradient descent), but may not be sufficient to describe a problem of interest

▶ In the lecture on safe learning, we saw that we need to solve constrained optimisation problems;
as we will see shortly, this is also the case in inverse reinforcement learning

▶ A general constrained optimisation problem can be written as

minimise f(x)
subject to gi(x) ≤ 0, 1 ≤ i ≤ m

hi(x) = 0, 1 ≤ i ≤ p

▶ Often, both the objective function f and the constraints are of a particular form (e.g. linear or
convex), which can be solved using linear and convex programming, respectively

▶ The following few slides are there to remind you about mathematical optimisation so that you are
not surprised by some of the notation later on
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Linear Optimisation

▶ Linear optimisation is a problem of optimising a linear objective function that is subject to
linear constraints

▶ A linear optimisation problem has the following general form:

minimise aTx
subject to cTi x ≤ bi, 1 ≤ i ≤ m

▶ Linear optimisation problems can be solved using the simplex method or using interior-point
methods
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Convex Optimisation

▶ The problem of optimising a convex objective function that is subject to convex constraints
is called convex optimisation

▶ For a convex function f , it holds that f(αx+ βy) ≤ αf(x) + βf(y) for α, β ≥ 0, α+ β = 1

▶ A convex optimisation problem has the following general form:

minimise f(x)
subject to gi(x) ≤ bi, 1 ≤ i ≤ m

▶ Interior-point methods can also be used for solving convex optimisation problems
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Lagrangian and the Dual Problem
▶ In optimisation, the method of Lagrange multipliers is often used to rewrite the optimisation

problem and obtain a dual representation that can be solved more readily

▶ Let us particularly consider a general optimisation problem of the form

minimise f(x)
subject to gi(x) ≤ 0, 1 ≤ i ≤ m

hi(x) = 0, 1 ≤ i ≤ p

▶ The Lagrangian of this problem is defined as the function

L(x,λ,ν) = f(x) +

m∑
i=1

λigi(x) +

p∑
i=1

νihi(x)

where λi, 1 ≤ i ≤ m and νi, 1 ≤ i ≤ p are called Lagrange multipliers

▶ A solution to the original problem can then be found by the following optimisation problem:

maximise inf
x

L(x,λ,ν)

subject to λ ⪰ 0
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Inverse Reinforcement Learning Methods
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IRL Objective

▶ The objective of inverse reinforcement learning is simple to state in words: a reward function that
summarises the desired behaviour of a robot needs to be extracted

“Given

▶ measurements of an agent’s behaviour over time, in a variety of circumstances

▶ measurements of the sensory inputs to that agent

▶ a model of the physical environment (including the agent’s body)

Determine the reward function that the agent is optimizing.” (Russell, 1998)

▶ Typically, learning is done given demonstrations T = {T1, ...,TM}, each of which has the form

Ti =
(
(s1,a1) , ...,

(
sTm

i
,aTm

i

))
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Reinforcement Learning vs. Inverse Reinforcement Learning

Reinforcement learning (RL)

Reward Trajectories Transition model

Policy

Inverse reinforcement learning (IRL)

Trajectories Transition model

Reward

Many IRL methods are iterative, where RL is used in an internal loop that learns a policy given a
reward hypothesis
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IRL Methods Overview

Maximum margin
methods

IRL method
families

Maximum entropy
techniques

Bayesian IRL
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Maximum Margin Methods

▶ The objective of max margin methods is to define a reward function that maximises a margin
between an optimal policy and other policies

▶ Conceptually, the idea is similar to what is used in support vector machines

▶ Max margin methods are typically defined by a linear or a quadratic optimisation problem

▶ The earliest max margin methods were proposed in

▶ A. Y. Ng and S. J. Russell, ”Algorithms for Inverse Reinforcement Learning,” in Proc. 17th Int. Conf.
Machine Learning (ICML), 2000, pp. 663–670.

▶ P. Abbeel and A. Y. Ng, ”Apprenticeship learning via inverse reinforcement learning,” in Proc. 21st
Int. Conf. Machine learning, 2004.

We will briefly look at some of these on the next few slides
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Estimation with a Known Transition Model and Policy
Maximum Margin Methods

▶ Let us assume that we are given a continuous state space S and that the reward function R is a linear
combination of state features ϕk(s) with weights wk:

R(s,a) =

N∑
k=1

wkϕk(s)

▶ If this is the case, the value function can be written as

V π(s) =

N∑
k=1

wkV
π
k (s)

▶ In this case, π = a1 is optimal if its induced expected value for any action is at least as good as the
value of any other action:

E
s′∼P (s′|s,a1)

[
V π(s′)

]
≥ E

s′∼P (s′|s,a)

[
V π(s′)

]
, ∀ s ∈ S, ∀a ∈ A \ a1

▶ The optimisation problem here is given as

max
∑

s∈S0

min
a∈A\a1

p

(
E

s′∼P (s′|s,a1)
[V π(s′)]− E

s′∼P (s′|s,a)
[V π(s′)]

)
such that |wk| ≤ 1, 1 ≤ k ≤ N

where S0 is a state subspace, and p(x) = x if x ≥ 0, otherwise p(x) = 2x
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Reward Estimation Given Example Trajectories
Maximum Margin Methods

▶ In a more general case, we have demonstrations T = {T1, ...,TM} and the objective here is to find
a reward R that maximises the expected value E [V π(s0)], for s0 belonging to an initial state
distribution D

▶ The optimisation problem in this case is

max
∑D

j=1 p
(
V̂ π∗

(s0)− V̂ πj (s0)
)

such that |wk| ≤ 1, 1 ≤ k ≤ N

where p(x) is defined as on the previous slide and {π1, ..., πD} is a set of candidate policies

▶ This is solved in an iterative fashion:

1. The optimisation problem above is solved to find a new reward function RD

2. A new policy πD+1 is found using RD and the process is repeated
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Reward Estimation by Expected Feature Maximisation
Maximum Margin Methods

▶ In a related formulation that is applicable to the case in which demonstrations T are given, the
expected feature values in the demonstrations µE (ϕk(s)) are of interest

▶ The objective is to find a reward function R that induces a policy π∗ which minimises
∥µπ∗ − µE∥

▶ Here, the optimisation problem is written as

max
w,t

t

such that
∑N

k=1 wkµE (ϕk(s)) ≤
∑N

k=1 wkµπj (ϕk(s)) + t, 0 ≤ j ≤ D
∥w∥ ≤ 1

▶ Just as the problem on the previous slide, this problem is solved iteratively, with a new policy
added to the candidate set at each iteration of the algorithm
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Reminder: Entropy, Maximum Entropy
▶ Given a random variable X, its entropy is defined as

Discrete X

H(X) = −
∑

xi∈X

P (xi) lnP (xi)

Continuous X

H(X) = −
∫

p(x) ln p(x)dx

▶ To maximise the entropy, H is optimised under the constraint that
∫
p(x)dx = 1:

Discrete X

H∗ = −
∑
xi

P (xi) lnP (xi) + λ

∑
xi

P (xi)− 1


Continuous X

H∗ = −
∫

p(x) ln p(x)dx+ λ

(∫
p(x)dx− 1

)

▶ In maximum entropy IRL, an important result is the maximisation of H under an additional constraint of a known
expectation of a function f(x) (a result due to E. T. Jaynes, “Information theory and statistical mechanics,”
Physical review, vol. 106, no. 4, pp. 620–630, 1957.):

H∗ = −
∫

p(x) ln p(x)dx+ λ

(∫
p(x)dx− 1

)
+ ν

(
N∑
i=1

pif(xi)

)
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Maximum Entropy Inverse Reinforcement Learning

▶ As the name implies, maximum entropy techniques have the objective of finding a reward that
maximises the entropy over a variable of interest, such as the feature counts that are present in
the demonstrations

▶ In other words, maximum entropy IRL models a distribution over the given demonstrations,
such that it looks for a distribution that maximises the entropy

▶ The earliest work on maximum entropy IRL is due to B. Ziebart et al. ”Maximum Entropy Inverse
Reinforcement Learning,” in Proc. 23rd AAAI Conf. Artificial Intelligence (AAAI), 2008, pp.
1433–1438.
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Maximum Entropy IRL Formulation
▶ In maximum entropy IRL (but also in some maximum margin methods), a commonly used value is

the feature count along a trajectory:

fTi =
∑

st∈Ti

ϕ(st)

such that the full reward along Ti is r(fTi
) = θTfTi

, where θ are weights

▶ The probability of all trajectories T is then modelled as

P (T|θ) = 1

Z
eθ

T fT

∏
st,at,st+1

P (st+1|st,at) =
1

Z
e
∑M

i=1 θT fTi

∏
st,at,st+1

P (st+1|st,at)

▶ The optimal weights (which maximise the entropy) are found by maximum likelihood estimation:

θ∗ = argmax
θ

L(θ) = argmax
θ

M∑
i=1

log P (Ti|θ)

▶ The function is maximised using gradient ascent, such that the gradient is the difference between
the observed feature counts f̃ and the expected feature counts:

∇L(θ) = f̃ −
M∑
i=1

P (Ti|θ)fTi

Inverse Reinforcement Learning: An Overview 25 / 32



Maximum Entropy IRL Formulation
▶ In maximum entropy IRL (but also in some maximum margin methods), a commonly used value is

the feature count along a trajectory:

fTi =
∑

st∈Ti

ϕ(st)

such that the full reward along Ti is r(fTi
) = θTfTi

, where θ are weights

▶ The probability of all trajectories T is then modelled as

P (T|θ) = 1

Z
eθ

T fT

∏
st,at,st+1

P (st+1|st,at) =
1

Z
e
∑M

i=1 θT fTi

∏
st,at,st+1

P (st+1|st,at)

▶ The optimal weights (which maximise the entropy) are found by maximum likelihood estimation:

θ∗ = argmax
θ

L(θ) = argmax
θ

M∑
i=1

log P (Ti|θ)

▶ The function is maximised using gradient ascent, such that the gradient is the difference between
the observed feature counts f̃ and the expected feature counts:

∇L(θ) = f̃ −
M∑
i=1

P (Ti|θ)fTi

Inverse Reinforcement Learning: An Overview 25 / 32



Maximum Entropy IRL Formulation
▶ In maximum entropy IRL (but also in some maximum margin methods), a commonly used value is

the feature count along a trajectory:

fTi =
∑

st∈Ti

ϕ(st)

such that the full reward along Ti is r(fTi
) = θTfTi

, where θ are weights

▶ The probability of all trajectories T is then modelled as

P (T|θ) = 1

Z
eθ

T fT

∏
st,at,st+1

P (st+1|st,at) =
1

Z
e
∑M

i=1 θT fTi

∏
st,at,st+1

P (st+1|st,at)

▶ The optimal weights (which maximise the entropy) are found by maximum likelihood estimation:

θ∗ = argmax
θ

L(θ) = argmax
θ

M∑
i=1

log P (Ti|θ)

▶ The function is maximised using gradient ascent, such that the gradient is the difference between
the observed feature counts f̃ and the expected feature counts:

∇L(θ) = f̃ −
M∑
i=1

P (Ti|θ)fTi

Inverse Reinforcement Learning: An Overview 25 / 32



Maximum Entropy IRL Formulation
▶ In maximum entropy IRL (but also in some maximum margin methods), a commonly used value is

the feature count along a trajectory:

fTi =
∑

st∈Ti

ϕ(st)

such that the full reward along Ti is r(fTi
) = θTfTi

, where θ are weights

▶ The probability of all trajectories T is then modelled as

P (T|θ) = 1

Z
eθ

T fT

∏
st,at,st+1

P (st+1|st,at) =
1

Z
e
∑M

i=1 θT fTi

∏
st,at,st+1

P (st+1|st,at)

▶ The optimal weights (which maximise the entropy) are found by maximum likelihood estimation:

θ∗ = argmax
θ

L(θ) = argmax
θ

M∑
i=1

log P (Ti|θ)

▶ The function is maximised using gradient ascent, such that the gradient is the difference between
the observed feature counts f̃ and the expected feature counts:

∇L(θ) = f̃ −
M∑
i=1

P (Ti|θ)fTi

Inverse Reinforcement Learning: An Overview 25 / 32



Maximum Entropy IRL Methods Overview

▶ On the previous slide, we looked at the original formulation from Ziebart et al. (2008), which is
applicable in discrete state spaces and assumes optimal demonstrations

▶ Extensions of maximum entropy IRL exist that consider suboptimal demonstrations

▶ One way to achieve this is to include an additional optimisation constraint that maximises the
difference to known suboptimal demonstrations

▶ Extensions over continuous state spaces exist as well, for instance using a neural network as a
reward estimator
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Bayesian Inverse Reinforcement Learning

▶ The idea behind Bayesian IRL follows the general idea of Bayesian reasoning — prior information
about a reward function is combined with evidence provided by expert demonstrations to
obtain an improved reward function estimate

▶ Unlike max margin methods, which obtain a point estimate of the reward function, Bayesian IRL
results in a distribution of rewards

▶ As a result, this family of methods can be applied even if the demonstrations are not optimal, just as
maximum entropy IRL

▶ The incorporation of prior knowledge can also reduce the amount of demonstrations necessary
for learning a sufficiently good reward estimate

▶ The first Bayesian IRL method is due to D. Ramachandran and E. Amir, ”Bayesian Inverse
Reinforcement Learning,” in Proc. Int. Joint. Conf. Artificial Intelligence (IJCAI), vol. 7, 2007, pp.
2586–2591.
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Bayesian IRL Formulation
▶ The probability of a trajectory given a reward is calculated under an independence assumption:

P (Ti|R) = P ((s1,a1)|R) · · ·P
(
(sTm

i
,aTm

i
)|R

)

▶ The probability of a state-action pair given a reward is modelled as an exponential function of
the reward-specific state-action value function:

P ((st,at)|R) =
1

Z
eαQ

∗(st,at,R)

▶ Under this model, the probability of a trajectory is given as

P (Ti|R) =
1

Z
eα

∑
t Q

∗(st,at,R)

▶ The posterior of the reward given a trajectory is thus:

P (R|Ti) = ηP (Ti|R)P (R)

= η′eα
∑

t Q
∗(st,at,R)P (R)

▶ Given the posterior distribution, the mean or the maximum a posteriori (MAP) estimate can be
used as an estimate of the reward
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Bayesian IRL Methods Overview

▶ The formulation on the previous slide is the original model from Ramachandran and Amir (2007),
but there is a large variety of Bayesian IRL algorithms that differ along multiple dimensions:

▶ The estimation of the mean or MAP estimate (sampling from the posterior is usually done for this
purpose, or the prior is written in a form that leads to a tractable posterior, such as a Gaussian
distribution)

▶ Learning from multiple demonstrators that may follow different rewards (clustering is sometimes
used for this purpose)

▶ Reward learning that incorporates negative demonstrations rather than only positive examples, as
well as learning to account for states that are not visited during the demonstrations (Gaussian
processes can be used to model the posterior in this case)
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Summary

▶ For learning robot policies (using reinforcement learning), a reward function is typically needed, but
it is often challenging to write down a good enough reward function manually

▶ Inverse reinforcement learning (IRL) is the problem of learning a reward function, typically given a
set of expert demonstrations

▶ There are multiple classes of IRL methods; we particularly looked at maximum margin methods,
maximum entropy IRL, and Bayesian IRL
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