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Overall Objective

Increase the interpretability of robot action execution so that execution failures can be analysed - important for users so that they understand the reasons for failures, but also for
robots so that they can learn from failures more effectively

Execution Model Representation [1]

» Execution model represents execution-specific action knowledge

» Formally defined as M = (R, F') with R relational and F' continuous

» Qualitative action modes represented by a collection of relational
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Model Generalisation Over Object Classes [3]
s ot boen manipuiated before » Objective: Generalise model M learned for class ¢ to another class o

» An object ontology and generalisation trials guide generalisation
» Class generalisation preferences represented in a suitability graph

» Suitabilities P;(0|o, S) defined by a distribution of the form
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Object Pt_|_1(0‘07 S) — 77 8(07 O>P(S|07 O)Pt(a 07 S) A: Object grasping B: Object stowing
o Container - » Class 0" selected for generalisation maximises the suitability over the Action Pitcher | Glass | Baseball

/\ related objects C,: #Fmodels 2 1 1
: - - P . A o* mug | tennis ball

- ool P e J12 0" = argmax P, 1(0]o, S = 1) N+ { 3 3

ocC,
Baseball | | Tennis ball Rugby ball Mug Pitcher / \ / \ B #m(zkdels 1b 1 1 b ”
| Object similarity s(o, 0): Success probability P(S|0,0): JSH sugaé ox { tennllso a
X » Guides generalisation based » Represented by a Beta distri-

i ' i 4 . h
on relations in an ontology bution Beta(a,,, B,,) [5] Model encourages adaptive general-
| - » Calculated using the Wu- » Posterior updated based on isation and informs about the need
| i > L s - A g : . . . . . s, = .

Pror successful executions with previously manipulated objects i Palmer similarity measure [4] ) . the generalisation outcomes ) for additional learning
N J
Execution Failure Diagnosis [0]
» Failure diagnosis found as a violation of the relations in R
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Future Work
» Automatic or lifelong learning of relations for increasing the diagnosis quality » Including object affordances in the generalisation framework
» Extending the diagnosis framework to deal with failures propagated over time » Extending the generalisation framework to deal with a dynamic ontology
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