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Structure

▶ Basics of robot manipulation

▶ Perception for cognition-enabled manipulation

▶ Learning-based robot manipulation

▶ Knowledge for manipulation

▶ Execution monitoring and failure recovery
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Basics of Robot Manipulation
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Object Pose Detection (Frames Revisited)

▶ Traditionally, manipulation involves a problem of finding:

▶ the pose of an object that should be manipulated

▶ a transformation that would bring the robot’s end
effector to the object

▶ But how should the robot actually move to that pose?

J. Craig, “Spatial Descriptions and Transformations,” in
Introduction to Robotics: Mechanics and Control. Pearson

Education, Inc. 2005, ch. 2, p. 39.
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Motion Planning

Traditional research in manipulation has been con-
cerned with the following aspects:

▶ Path planning: Finding a path — a sequence
of poses — that brings the end effector from
its current pose to the goal pose

▶ Trajectory planning: Finding a fully specified
trajectory — a sequence of poses and velocities
— that brings the end effector to the goal pose

▶ Low-level control: Deciding how to actually
move the robot’s actuators

L. E. Kavraki and S. M. LaValle, “Motion Planning,” in Springer Handbook of
Robotics. Springer-Verlag Berlin Heidelberg. 2008, ch. 5, p. 111. Available:

https://link.springer.com/book/10.1007/978-3-540-30301-5
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Roadmap Planning

▶ One commonly used procedure of finding paths from
the start to the goal configuration is that of
(probabilistic) roadmap planning

▶ This procedure looks for valid paths in configuration
space by exploring local neighbourhoods, thereby
expanding the path further until the start and
goal configuration are connected L. E. Kavraki and S. M. LaValle, “Motion Planning,” in Springer Handbook of

Robotics. Springer-Verlag Berlin Heidelberg. 2008, ch. 5, p. 111. Available:
https://link.springer.com/book/10.1007/978-3-540-30301-5
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Low-Level Robot Control
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Is Traditional Manipulation Cognition-Enabled?

Not really, as it does not take into account:

Knowledge about objects (e.g. physical
properties) and adaptivity based on that

Prior manipulation experiences — every
problem instance is treated as a separate
manipulation episode

The existence of other agents in the world
— generally assumes that the environment is
static and that only the robot can change the
state of an object (although there are dynamic
planners as well)

Information about human-acceptable
trajectories — in principle, a motion planner
accepts any valid solution (acceptability
objectives can be optimised during planning, but
may be difficult to specify)
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What is Cognition-Enabled Manipulation Then?

▶ We can talk about cognition-enabled manipulation if a robot is able to consume different
sources of knowledge about the environment that it is interacting with

▶ The ability to improve its skills based on experience as well as to learn new skills is also an
important aspect of cognition-enabled manipulation

▶ Particularly in human-centred environments, a cognitive robot should also be able to move in a
predictable / “human-like” way

Cognition-enabled manipulation enables a robot to interact with the environment by taking into account
all available environment information, to move in a human-like way, to monitor its execution and
recover from failures appropriately, as well as to acquire and improve its skills through learning
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Elements of Cognition-Enabled Manipulation

Object
knowledge

Knowledge
reuse / sharing

World
model

Multimodal
perception

Cognition-enabled
manipulation

Monitoring and
recovery

Contextual
awareness

Skill
learning

Lifelong object
learning
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Elements of Cognition-Enabled Manipulation
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Perception for Cognition-Enabled Manipulation
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Perception Capabilities for Cognitive Robots

Cognition-enabled manipulation can be facilitated by a perceptual system that enables capabilities as:

Grounding symbols to real-world entities
Using information about the task context to
inform both perceptual and manipulation
activities

Recognising and using semantic environment
information (e.g. room recognition)

Incorporating multimodal perceptual
information (such as visual, auditory, and tactile
information)

Recognising new / unknown objects (no
closed-world assumption)
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Symbol Grounding
▶ In cognitivist and hybrid systems, symbols that are used to represent knowledge about the

world in the robot’s knowledge base need to be mapped to real entities in the world

▶ The symbol grounding problem1 is concerned with how the mapping of symbols can be done
(note that a ground expression is one without free variables)

▶ Consider the following expression, which might define an action for when some robot R can pick an
object X that is currently on a surface T with its hand H:

free(R,H) ∧ inFrontOf(R, T ) ∧ on(X,T ) =⇒ pick(R,H,X)

In a ground version of the expression, all variables would be assigned to real-world entities:

free(lucy, hand) ∧ inFrontOf(lucy, desk) ∧ on(cup, desk) =⇒ pick(lucy, hand, cup)

▶ Grounding is commonly done using connectionist models (particularly deep neural networks on
more modern systems)

1S. Coradeschi et al., “A Short Review of Symbol Grounding in Robotic and Intelligent Systems,” KI - Künstliche Intelligenz, vol. 27, pp. 129-136, 2013. Available:
https://doi.org/10.1007/s13218-013-0247-2
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Contextual Awareness
▶ The ability to recognise the execution context and act in a context-aware manner is one

important characteristic of cognitive manipulation (e.g. is the robot interacting with a sick patient
or a healthy person?)

▶ Contextual information is an important prerequisite for personalising robot behaviour

▶ Difficult problem: Which contextual information is relevant to attend to?

D. Chang and B. Han, “Knowledge-based Visual Context-Aware Framework for Applications in Robotic Services,” in Proc. IEEE/CVF Winter Conf. Applications of Computer Vision, 2023, pp.
70-78.
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Semantic Mapping and Localisation

N. Sünderhauf et al., “Place categorization and semantic
mapping on a mobile robot,” in Proc. IEEE Int. Conf.

Robotics and Automation (ICRA), 2016, pp. 5729–5736.
Available: https://doi.org/10.1109/ICRA.2016.7487796

▶ One way to bring context into the perceptual process is to use
a semantic map

▶ A semantic map assigns semantic meaning to places (or
items) based on perceptual features

▶ Semantic information about the robot’s location can be used
to:

▶ Inform subsequent perceptual actions (e.g. if a robot is
looking for an object)

▶ Guide the execution of manipulation skills (e.g. to prevent
unsafe motions close to patients in a room)

▶ Detect execution anomalies (e.g. to recognise that a bottle
of medicine is on a coffee table where children can reach it)
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Multimodal Perception

J. Sinapov et al., “Learning relational object categories
using behavioral exploration and multimodal perception,”
in IEEE Int. Conf. Robotics and Automation (ICRA),

2014, pp. 5691–5698. Available:
https://doi.org/10.1109/ICRA.2014.6907696

▶ In traditional applications, a robot uses one main modality to
perceive its environment (e.g. a lidar for localisation, a camera for
object detection); a multimodal perception system combines
different modalities (e.g. visual and tactile information)

▶ Multimodality is particularly important for exploring the
environment efficiently, but also for improving the execution
robustness

▶ Multimodality can be achieved using manual heuristics
(classical approach) or with multimodal neural networks (more
recent approach)

▶ Multimodal perception is indispensable for human manipulation
as well (self-experiment: put on gloves — that affect your tactile
sensing — and try to grasp a bottle with your eyes closed)
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Lifelong Object Learning

J. Young et al., “Towards Lifelong Object Learning by
Integrating Situated Robot Perception and Semantic Web

Mining,” in Proc. 22nd European Conf. Artificial Intelligence
(ECAI), 2016, pp. 1458–1466. Available:

https://doi.org/10.3233/978-1-61499-672-9-1458

▶ Robotic perceptual system are often based on an unreasonable
assumption that all relevant objects are known at design /
robot training time

▶ In cognition-enabled manipulation, this assumption is relaxed
by allowing the robot to recognise unknown objects and
endowing it with an ability to learn models of them

▶ Lifelong object learning can be particularly difficult in
connectionist systems because of unwanted forgetting (it is
tricky to guarantee that new information can be incorporated
without forgetting relevant old information)
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Class Incremental Learning

▶ Class incremental learning is a lifelong learning technique
based on which new classes are included in a recognition
system over time

▶ In the context of neural networks, this would mean retraining
the network with the complete (growing) dataset — not
computationally feasible

▶ Typical techniques use exemplars (representative examples of
old classes) instead of keeping the full dataset

▶ A potential problem that can appear with this technique is
recency bias (old classes get forgotten, the recognition system
is biased towards recent classes) — but there are some
techniques to address this problem

S. Rebuffi et al., “iCaRL: Incremental Classifier and
Representation Learning,” in Proc. IEEE Conf. Computer

Vision and Pattern Recognition (CVPR), 2017, pp. 2001–2010.
Available: https://doi.org/10.1109/CVPR.2017.587
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is biased towards recent classes) — but there are some
techniques to address this problem

S. Rebuffi et al., “iCaRL: Incremental Classifier and
Representation Learning,” in Proc. IEEE Conf. Computer

Vision and Pattern Recognition (CVPR), 2017, pp. 2001–2010.
Available: https://doi.org/10.1109/CVPR.2017.587

Cognition-Enabled Manipulation: An Overview 19 / 41

https://doi.org/10.1109/CVPR.2017.587


Class Incremental Learning

▶ Class incremental learning is a lifelong learning technique
based on which new classes are included in a recognition
system over time

▶ In the context of neural networks, this would mean retraining
the network with the complete (growing) dataset — not
computationally feasible

▶ Typical techniques use exemplars (representative examples of
old classes) instead of keeping the full dataset

▶ A potential problem that can appear with this technique is
recency bias (old classes get forgotten, the recognition system
is biased towards recent classes) — but there are some
techniques to address this problem

S. Rebuffi et al., “iCaRL: Incremental Classifier and
Representation Learning,” in Proc. IEEE Conf. Computer

Vision and Pattern Recognition (CVPR), 2017, pp. 2001–2010.
Available: https://doi.org/10.1109/CVPR.2017.587

Cognition-Enabled Manipulation: An Overview 19 / 41

https://doi.org/10.1109/CVPR.2017.587


Class Incremental Learning

▶ Class incremental learning is a lifelong learning technique
based on which new classes are included in a recognition
system over time

▶ In the context of neural networks, this would mean retraining
the network with the complete (growing) dataset — not
computationally feasible

▶ Typical techniques use exemplars (representative examples of
old classes) instead of keeping the full dataset

▶ A potential problem that can appear with this technique is
recency bias (old classes get forgotten, the recognition system
is biased towards recent classes) — but there are some
techniques to address this problem

S. Rebuffi et al., “iCaRL: Incremental Classifier and
Representation Learning,” in Proc. IEEE Conf. Computer

Vision and Pattern Recognition (CVPR), 2017, pp. 2001–2010.
Available: https://doi.org/10.1109/CVPR.2017.587

Cognition-Enabled Manipulation: An Overview 19 / 41

https://doi.org/10.1109/CVPR.2017.587


Class Incremental Learning

▶ Class incremental learning is a lifelong learning technique
based on which new classes are included in a recognition
system over time

▶ In the context of neural networks, this would mean retraining
the network with the complete (growing) dataset — not
computationally feasible

▶ Typical techniques use exemplars (representative examples of
old classes) instead of keeping the full dataset

▶ A potential problem that can appear with this technique is
recency bias (old classes get forgotten, the recognition system
is biased towards recent classes) — but there are some
techniques to address this problem

S. Rebuffi et al., “iCaRL: Incremental Classifier and
Representation Learning,” in Proc. IEEE Conf. Computer

Vision and Pattern Recognition (CVPR), 2017, pp. 2001–2010.
Available: https://doi.org/10.1109/CVPR.2017.587

Cognition-Enabled Manipulation: An Overview 19 / 41

https://doi.org/10.1109/CVPR.2017.587


Learning-Based Robot Manipulation
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Why Learning-Based Manipulation?

A multitude of reasons — it can equip a robot with an ability to:

Improve skills based on experience
Imitate motions or acquire complete behaviour
models by observing humans

Perform flexible behaviours that are difficult to
program explicitly (such as visuomotor policies)

Independently explore the environment and
identify causal relationships between its actions
and the observed effects

Adapt based on the preferences of human
collaborators
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An (Incomplete) Overview of Learning-Based Manipulation

Dynamic motion
primitives

Visuomotor
policies

Task
learning

Learning from
demonstration

Learning-based
manipulation

Reinforcement
learning

Causal
learning

Inverse reinforcement
learning

We will look at these briefly on the next slides; most of them are treated in more detail in my “Robot
Learning” course
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Learning from Demonstration (LfD)
▶ The most prevalent type of learning-based manipulation is learning from demonstration (also called

imitation learning)

▶ In LfD, an expert demonstrator teaches the robot a motion or a complete task

▶ Particularly in the context of motions, LfD is usually followed by subsequent learning (e.g.
reinforcement learning); the demonstration is thus used to initialise the robot’s execution policy
so that it can then be improved by additional self-learning

H. Ravichandar et al., “Recent Advances in Robot Learning from Demonstration,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 3, pp. 13:1–34, 2020. Available:
https://doi.org/10.1146/annurev-control-100819-063206
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Dynamic Motion Primitives (DMPs)2

A DMP models trajectories by a second-order differential equation

τ ÿ = α (β (g − y)− ẏ) + f

Here:

f(x) =

∑k
i=1 Ψi(x)wi∑k
i=1 Ψi(x)

x (g − y0) Ψi(x) = exp

(
− 1

2σ2
i

(x− ci)
2

)
By modifying the weighting terms (learned using weighted linear regression), arbitrary trajectories can
be represented

2A. J. Ijspeert et al., “Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013. Available:
https://ieeexplore.ieee.org/document/6797340
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Learning Trajectories Using Gaussian Mixture Models (GMMs)3

▶ Motion trajectories can also be represented in a
probabilistic manner — a more appropriate model when
multiple demonstrations are given. A GMM is one
possible representation for this

▶ For a time-dependent system, the distribution P (t,y) of
time t and trajectory attractor points y is modelled as a
GMM with K components:

P (t,y) =

K∑
i=1

πiN (µi,Σi)

▶ The conditional distribution P (y|t) is then found by Gaussian mixture regression:

µ̂y =

K∑
i=1

hi(t)
[
µy
i +Σyt

i

(
Σt

i

)−1 (
t− µt

i

)] Σ̂y =

K∑
i=1

h2
i (t)

[
Σy

i − Σyt
i

(
Σt

i

)−1
Σty

i

]
3Slide fully based on S. Calinon et al., “Statistical dynamical systems for skills acquisition in humanoids,” in Proc. 12th IEEE-RAS Int. Conf. Humanoid Robots (Humanoids), 2012, pp.

323-329. Available: https://doi.org/10.1109/HUMANOIDS.2012.6651539
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Task Learning From Observation

M. J. Aein et al., “Library of actions: Implementing a generic
robot execution framework by using manipulation action

semantics,” Int. Journal Robotics Research, vol. 38, no. 8, pp.
910–934, 2019. Available:

https://doi.org/10.1177/0278364919850295

▶ In observation-based task learning, a robot learns a complete
model of a task — either for recognising or for performing the
task

▶ This is particularly useful for recognition if a robot can
learn from a large video dataset — demonstrations are then
given “for free”

▶ Learning models for execution usually requires data other
than images (e.g. skeleton recordings)

▶ Typically used in cognitivist and hybrid systems — the learning
process involves grounding symbols of observed entities
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Active Manipulation Task Learning

B. Hayes and B. Scassellati, “Discovering task constraints through
observation and active learning,” in Proc. IEEE/RSJ Int. Conf.

Intelligent Robots and Systems (IROS), 2014, pp. 4442–4449. Available:
https://doi.org/10.1109/IROS.2014.6943191

▶ During task learning, a robot doesn’t have to be a passive
observer — it can also actively participate in the
learning process by posing disambiguating queries

▶ This is particularly important if multiple distinct
demonstrations (from multiple teachers) are received —
actively asking queries will allow the robot to identify
actions:

▶ whose ordering is not strictly important or

▶ which are optional in the task
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Visuomotor Policies
▶ An execution policy that continuously maps perceptual input to motor actions is called a

visuomotor policy

▶ As the name suggests, the perceptual input needs to include visual data, although other
modalities are sometimes combined as well

▶ Conceptually, visuomotor policies mimic the way people manipulate — our manipulation
actions are always driven by perceptual input and we don’t need to always replan trajectories

▶ Advances in deep learning have made visuomotor policies practically feasible; such policies are often
trained using deep reinforcement learning

S. Levine et al., “End-to-End Training of Deep Visuomotor Policies,” Journal of Machine Learning Research, vol. 17, no. 1, pp. 1334–1373, Jan. 2016. Available:
https://jmlr.org/papers/v17/15-522.html
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Inverse Reinforcement Learning (IRL)

S. Arora and P. Yoshi, “A survey of inverse reinforcement
learning: Challenges, methods and progress,” Artificial

Intelligence, vol. 297, pp. 103500:1-28, Aug. 2021. Available:
https://doi.org/10.1016/j.artint.2021.103500

▶ In robot (reinforcement) learning, we assume that a reward
function to learn from is given —– that is, however, not always
the case

▶ The goal of IRL is to estimate the reward function that a
human expert is following

▶ A typical IRL learning loop involves (i) finding a reward
estimate and (ii) learning a policy with the estimate until
the learned policy corresponds to the observed policy

▶ Conceptually, IRL corresponds very closely to how human
apprentices learn by observing experts
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Causal Learning
▶ Typical machine learning leads to learning correlations, not necessarily causations (for

example, this is one reason why deep learning-based models can be vulnerable to trivial adversarial
attacks)

▶ Causal learning can have a variety of purposes, such as:
▶ Finding out which parameters are actually relevant for learning a given skill (from a given set of

parameters, not all of which may be important for the skill)
▶ Identifying dependences between skills (information that is useful for fault analysis)

▶ Successful causal learning requires the ability to perform interventions (either in the real world or
in a simulated model) — identifying causality requires different hypotheses to be tested and
incorrect ones to be eliminated

C. Uhde et al., “The Robot as Scientist: Using Mental Simulation to Test Causal Hypotheses Extracted from Human Activities in Virtual Reality,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS), 2020, pp. 8081–8086. Available: https://doi.org/10.1109/IROS45743.2020.9341505
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and Systems (IROS), 2020, pp. 8081–8086. Available: https://doi.org/10.1109/IROS45743.2020.9341505
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Knowledge for Manipulation
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Useful Types of Knowledge for Cognition-Enabled Manipulation

Different types of knowledge can facilitate cognition-enabled manipulation:

Object ontologies

Specify properties of objects that a robot needs
to manipulate, or relations and similarities
between objects

World models
Represent the robot’s up-to-date belief about the
state of the world — the objects and other
agents in it

Knowledge sharing

Allow knowledge reuse among agents

Predictive skill models
Enable joint task and motion planning

Prior learned experiences

Facilitate subsequent learning and knowledge
transfer
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World Modelling

J. Elfring et al., “Semantic world modeling using probabilistic
multiple hypothesis anchoring,” Robotics and Autonomous
Systems, vol. 61, no. 2, pp. 95–105, Feb. 2013. Available:

https://doi.org/10.1016/j.robot.2012.11.005

▶ A world model is a representation that specifies the robot’s
belief about various relevant properties of the world

▶ A world model enables a robot to:

▶ Keep track of dynamic changes in the world

▶ Actively explore hypotheses in order to improve its belief

▶ Communicate its belief to other agents during collaborative
execution

▶ Different representations used in cognitivist and emergent
systems
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Object Ontologies

M. Tenorth and M. Beetz, “KnowRob: A knowledge processing
infrastructure for cognitionenabled robots,” Int. Journal
Robotics Research, vol. 32, no. 5, pp. 566–590, 2013.
Available: https://doi.org/10.1177/0278364913481635

▶ An ontology allows specifying information about an
environment using description logic

▶ An ontology consist of two components:

▶ A terminological box (TBox), which includes concepts (e.g.
objects) and relations between them

▶ An assertional box (ABox), which includes instantiations of
the concepts and relations

▶ We generally distinguish between two types of ontologies:

▶ An upper-level ontology that specifies common concepts and
relations that hold across domains

▶ A domain-specific ontology that instantiates an upper-level
ontology or extends it with terms that are specific to a given
domain

▶ Only used in cognitivist and hybrid cognitive systems
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Task and Motion Planning (TAMP)

C. R. Garrett et al. “Integrated task and motion planning,”
Annual review of control, robotics, and autonomous systems,

vol. 4, pp. 265–293, 2021. Available:
https://doi.org/10.1146/annurev-control-091420-084139

▶ Task and motion planning is the act of performing
simultaneous task planning and robot motion planning
before a robot starts with the execution of a task

▶ TAMP requires not only planning models of actions (in
terms of preconditions and effects), but also predictive
execution models so that the most appropriate execution
parameters can be identified

▶ Particularly useful if the robot’s operation is not interrupted by
other agents
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Knowledge Sharing Between Robots

M. Waibel et al., “RoboEarth,” in IEEE Robotics &
Automation Magazine, vol. 18, no. 2, pp. 69–82, June 2011.

Available: https://doi.org/10.1109/MRA.2011.941632

▶ Cognitive manipulation can also be facilitated by enabling
robots to reuse knowledge that other robots possess

▶ Such knowledge exchange can be done either between
members of a multi-robot team (using network
communication) or even between completely distinct robots
(through web-based services)

▶ Successful knowledge sharing requires:

▶ A common knowledge representation framework (e.g. a
knowledge graph)

▶ A unified querying language for knowledge retrieval
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Prior Learned Experiences: Foundation Models

R. Bommasani et al. “On the opportunities and risks of
foundation models,” CoRR, vol. 2108.07258, 2021. Available:

https://arxiv.org/abs/2108.07258

▶ The training of large data-driven models for different tasks
leads to a question of how the knowledge in such models
can be transferred to different tasks

▶ A foundation model is a large neural network model that is
trained on a large dataset (potentially including different
modalities); this is then adapted (fine-tuned) for a concrete
task (with task-specific data)

▶ Foundation models can be used in emergent and hybrid
cognitive architectures

▶ Foundation models are very large networks (which makes them
inherently non-transparent — by themselves, not ideal for
trustworthy robots)
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Execution Monitoring and Failure Recovery
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Execution Anomaly Detection

▶ A cognition-enabled manipulation system needs to be able to
recognise cases in which the execution does not proceed
as expected

▶ Anomaly detection is a procedure of identifying time points
at which such unexpected events occur

▶ Note that anomalies and failures are not necessarily
equivalent: a failure is an anomaly, but the opposite does not
necessarily hold

▶ Anomaly (or failure detection) is a prerequisite for subsequent
execution recovery

A. Inceoglu et al., “Failure Detection Using Proprioceptive,
Auditory and Visual Modalities,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), 2018, pp. 2491–2496.

Available: https://doi.org/10.1109/IROS.2018.8594169

S. Thoduka et al., “Using Visual Anomaly Detection for Task
Execution Monitoring,” in Proc. IEEE/RSJ Int. Conf.

Intelligent Robots and Systems (IROS), 2021, pp. 4604–4610.
Available: https://doi.org/10.1109/IROS51168.2021.9636133
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Execution Failure Recovery

▶ Anomaly detection is useful to the execution of
manipulation skills if it is followed by a
subsequent recovery

▶ Execution failure recovery is a procedure of
performing actions that remedy the
execution and enable the original execution
to be continued

▶ Often, recovery is done by a simple heuristic
(e.g. repeating the failed skill); a cognitive
robot should be able to recover more
effectively by identifying and using
information about the failure

S. Mukherjee et al., “Reactive Long Horizon Task Execution via Visual Skill and
Precondition Models,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems

(IROS), 2021, pp. 5717–5724. Available:
https://doi.org/10.1109/IROS51168.2021.9636037
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Conclusion: What is Cognition-Enabled Robot Manipulation?

▶ Cognition-enabled manipulation enhances traditional robot manipulation with capabilities
associated with cognitive agents, such as:

▶ the ability to use knowledge about the environment

▶ deal with varied perceptual signals

▶ learn from experience

▶ identify and resolve execution failures

▶ Through its various elements, cognition-enabled manipulation increases the practical capabilities
of a robot and enhances the suitability of manipulation-based systems for everyday,
human-centred environments
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