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Basics of Robot Manipulation
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Object Pose Detection (Frames Revisited)

(T}

» Traditionally, manipulation involves a problem of finding:
» the pose of an object that should be manipulated G)

» a transformation that would bring the robot's end s)
effector to the object wl

» But how should the robot actually move to that pose?

J. Craig, “Spatial Descriptions and Transformations,” in
Introduction to Robotics: M ics and Control. Pearson
Education, Inc. 2005, ch. 2, p. 39.
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Motion Planning

Traditional research in manipulation has been con-
cerned with the following aspects:
» Path planning: Finding a path — a sequence
of poses — that brings the end effector from
its current pose to the goal pose

» Trajectory planning: Finding a fully specified
trajectory — a sequence of poses and velocities
— that brings the end effector to the goal pose

» Low-level control: Deciding how to actually
move the robot's actuators
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Given:

. Aworkspace W, where either W=R? or W=R3.

. An obstacle region OCW.

. A robot defined in W. Either a rigid body A or a collection of m links: A1, Az,... A m -
. The configuration space € (Cops and Cyree are then defined).

. An initial configuration q |€Cjge.

o oA W N o

. A goal configuration q ¢ €Cfrce. The initial and goal configuration are often called a query

@nq0)-

Compute a (continuous) path, T:[0,1] = Cee, such that T(0)=¢qand T(1)=q .

L. E. Kavraki and S. M. LaValle, “Motion Planning,” in Springer Handbook of
Robotics. Springer-Verlag Berlin Heidelberg. 2008, ch. 5, p. 111. Available:
https://link.springer.com /book /10.1007 /978- 3-540-30301-5
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Roadmap Planning

» One commonly used procedure of finding paths from Q

the start to the goal configuration is that of
(probabilistic) roadmap planning

» This procedure looks for valid paths in configuration
space by exploring local neighbourhoods, thereby
expanding the path further until the start and
goal configuration are connected L. E. Kavraki and S. M. LaValle, “Motion Planning,” in Springer Handbook of

Robotics. Springer-Verlag Berlin Heidelberg. 2008, ch. 5, p. 111. Available:
https:/ /link.springer.com /book /10.1007 /978- 3- 540-30301- 5
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Low-Level Robot Control

Joint position Impedance
control control

Joint velocity Admittance
control control
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control

Torque
control
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Is Traditional Manipulation Cognition-Enabled?

Not really, as it does not take into account:
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Knowledge about objects (e.g. physical
properties) and adaptivity based on that
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Is Traditional Manipulation Cognition-Enabled?

Not really, as it does not take into account:

Prior manipulation experiences — every
problem instance is treated as a separate
manipulation episode

Knowledge about objects (e.g. physical
properties) and adaptivity based on that
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Is Traditional Manipulation Cognition-Enabled?

Not really, as it does not take into account:

Prior manipulation experiences — every
problem instance is treated as a separate
manipulation episode

Knowledge about objects (e.g. physical
properties) and adaptivity based on that

The existence of other agents in the world
— generally assumes that the environment is
static and that only the robot can change the
state of an object (although there are dynamic
planners as well)
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Is Traditional Manipulation Cognition-Enabled?

Not really, as it does not take into account:

Knowledge about objects (e.g. physical
properties) and adaptivity based on that

The existence of other agents in the world
— generally assumes that the environment is
static and that only the robot can change the
state of an object (although there are dynamic
planners as well)
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Prior manipulation experiences — every
problem instance is treated as a separate
manipulation episode

Information about human-acceptable
trajectories — in principle, a motion planner
accepts any valid solution (acceptability
objectives can be optimised during planning, but
may be difficult to specify)
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What is Cognition-Enabled Manipulation Then?

» We can talk about cognition-enabled manipulation if a robot is able to consume different
sources of knowledge about the environment that it is interacting with
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What is Cognition-Enabled Manipulation Then?

» We can talk about cognition-enabled manipulation if a robot is able to consume different
sources of knowledge about the environment that it is interacting with

» The ability to improve its skills based on experience as well as to learn new skills is also an
important aspect of cognition-enabled manipulation
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What is Cognition-Enabled Manipulation Then?

» We can talk about cognition-enabled manipulation if a robot is able to consume different
sources of knowledge about the environment that it is interacting with

» The ability to improve its skills based on experience as well as to learn new skills is also an
important aspect of cognition-enabled manipulation

» Particularly in human-centred environments, a cognitive robot should also be able to move in a
predictable / “human-like” way
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What is Cognition-Enabled Manipulation Then?

» We can talk about cognition-enabled manipulation if a robot is able to consume different
sources of knowledge about the environment that it is interacting with

» The ability to improve its skills based on experience as well as to learn new skills is also an
important aspect of cognition-enabled manipulation

» Particularly in human-centred environments, a cognitive robot should also be able to move in a
predictable / “human-like” way

Cogpnition-enabled manipulation enables a robot to interact with the environment by taking into account
all available environment information, to move in a human-like way, to monitor its execution and
recover from failures appropriately, as well as to acquire and improve its skills through learning
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Elements of Cognition-Enabled Manipulation

Object Knowledge
knowledge reuse / sharing
World Multimodal
model perception
Monitoring and Contextual
recovery awareness
Skill Lifelong object
learning learning
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Elements of Cognition-Enabled Manipulation ‘%
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Perception for Cognition-Enabled Manipulation

Cognition-Enabled Manipulation: An Overview 12 /41



Perception Capabilities for Cognitive Robots

Cogpnition-enabled manipulation can be facilitated by a perceptual system that enables capabilities as:

Using information about the task context to
Grounding symbols to real-world entities inform both perceptual and manipulation

activities

Incorporating multimodal perceptual
information (such as visual, auditory, and tactile
information)

Recognising and using semantic environment
information (e.g. room recognition)

Recognising new / unknown objects (no
closed-world assumption)
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Symbol Grounding

» In cognitivist and hybrid systems, symbols that are used to represent knowledge about the
world in the robot’s knowledge base need to be mapped to real entities in the world

ISA Coradeschi et al., “A Short Review of Symbol Grounding in Robotic and Intelligent Systems,” K/ - Kiinstliche Intelligenz, vol. 27, pp. 129-136, 2013. Available:
https://doi.org/10.1007 /s13218-013- 0247-2
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Symbol Grounding
» In cognitivist and hybrid systems, symbols that are used to represent knowledge about the

world in the robot’s knowledge base need to be mapped to real entities in the world

» The symbol grounding problem! is concerned with how the mapping of symbols can be done
(note that a ground expression is one without free variables)

1s. Coradeschi et al., “A Short Review of Symbol Grounding in Robotic and Intelligent Systems,” K/ - Kiinstliche Intelligenz, vol. 27, pp. 129-136, 2013. Available:
https://doi.org/10.1007 /s13218-013- 0247-2
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Symbol Grounding

» In cognitivist and hybrid systems, symbols that are used to represent knowledge about the
world in the robot’s knowledge base need to be mapped to real entities in the world

» The symbol grounding problem! is concerned with how the mapping of symbols can be done
(note that a ground expression is one without free variables)

» Consider the following expression, which might define an action for when some robot R can pick an
object X that is currently on a surface T" with its hand H:

free(R,H) NinFrontOf(R,T) Non(X,T) = pick(R,H,X)

1s. Coradeschi et al., “A Short Review of Symbol Grounding in Robotic and Intelligent Systems,” K/ - Kiinstliche Intelligenz, vol. 27, pp. 129-136, 2013. Available:
https://doi.org/10.1007 /513218-013-0247-2
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Symbol Grounding

» In cognitivist and hybrid systems, symbols that are used to represent knowledge about the
world in the robot’s knowledge base need to be mapped to real entities in the world

» The symbol grounding problem! is concerned with how the mapping of symbols can be done
(note that a ground expression is one without free variables)

» Consider the following expression, which might define an action for when some robot R can pick an
object X that is currently on a surface T" with its hand H:

free(R,H) NinFrontOf(R,T) Non(X,T) = pick(R,H,X)
In a ground version of the expression, all variables would be assigned to real-world entities:

free(lucy, hand) A inFrontO f(lucy, desk) A on(cup, desk) = pick(lucy, hand, cup)

1s. Coradeschi et al., “A Short Review of Symbol Grounding in Robotic and Intelligent Systems,” K/ - Kiinstliche Intelligenz, vol. 27, pp. 129-136, 2013. Available:
https://doi.org/10.1007 /513218-013-0247-2
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Symbol Grounding

» In cognitivist and hybrid systems, symbols that are used to represent knowledge about the
world in the robot’s knowledge base need to be mapped to real entities in the world

» The symbol grounding problem! is concerned with how the mapping of symbols can be done
(note that a ground expression is one without free variables)

» Consider the following expression, which might define an action for when some robot R can pick an
object X that is currently on a surface T" with its hand H:

free(R,H) NinFrontOf(R,T) Non(X,T) = pick(R,H,X)
In a ground version of the expression, all variables would be assigned to real-world entities:
free(lucy, hand) A inFrontO f(lucy, desk) A on(cup, desk) = pick(lucy, hand, cup)

» Grounding is commonly done using connectionist models (particularly deep neural networks on
more modern systems)

ISA Coradeschi et al., “A Short Review of Symbol Grounding in Robotic and Intelligent Systems,” K/ - Kiinstliche Intelligenz, vol. 27, pp. 129-136, 2013. Available:
https://doi.org/10.1007 /s13218-013-0247-2
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Contextual Awareness

» The ability to recognise the execution context and act in a context-aware manner is one
important characteristic of cognitive manipulation (e.g. is the robot interacting with a sick patient
or a healthy person?)

» Contextual information is an important prerequisite for personalising robot behaviour

» Difficult problem: Which contextual information is relevant to attend to?

Perception process Inference process
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D. Chang and B. Han, "K ledge-based Visual Context-A Framework for Applications in Robotic Services,” in Proc. IEEE/CVF Winter Conf. Applications of Computer Vision, 2023, pp.
70-78.
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Semantic Mapping and Localisation

» One way to bring context into the perceptual process is to use
a semantic map

> A semantic map assigns semantic meaning to places (or
items) based on perceptual features

N. Siinderhauf et al., “Place categorization and semantic
mapping on a mobile robot,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2016, pp. 5729-5736.
Available: https://doi.org/10.1109/ICRA.2016.7487796
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» One way to bring context into the perceptual process is to use
a semantic map

> A semantic map assigns semantic meaning to places (or
items) based on perceptual features

» Semantic information about the robot's location can be used
to:

N. Siinderhauf et al., “Place categorization and semantic
mapping on a mobile robot,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2016, pp. 5729-5736.
Available: https://doi.org/10.1109/ICRA.2016.7487796
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Semantic Mapping and Localisation

» One way to bring context into the perceptual process is to use
a semantic map

> A semantic map assigns semantic meaning to places (or
items) based on perceptual features

» Semantic information about the robot’s location can be used
to:
» Inform subsequent perceptual actions (e.g. if a robot is
looking for an object)

N. Siinderhauf et al., “Place categorization and semantic
mapping on a mobile robot,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2016, pp. 5729-5736.
Available: https://doi.org/10.1109/ICRA.2016.7487796

o . Hochschule
Bonn-Rhein-Sieg nstitute for Al and
University of Applied Sciences Autonomous Systems. Cognition-Enabled Manipulation: An Overview 16 / 41



https://doi.org/10.1109/ICRA.2016.7487796

Semantic Mapping and Localisation

» One way to bring context into the perceptual process is to use
a semantic map

> A semantic map assigns semantic meaning to places (or
items) based on perceptual features

-

» Semantic information about the robot’s location can be used
to:
» Inform subsequent perceptual actions (e.g. if a robot is
looking for an object)
» Guide the execution of manipulation skills (e.g. to prevent
unsafe motions close to patients in a room)

corridor

N. Siinderhauf et al., “Place categorization and semantic
mapping on a mobile robot,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2016, pp. 5729-5736.
Available: https://doi.org/10.1109/ICRA.2016.7487796
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Semantic Mapping and Localisation

» One way to bring context into the perceptual process is to use
a semantic map

> A semantic map assigns semantic meaning to places (or
items) based on perceptual features

-

» Semantic information about the robot’s location can be used
to:
» Inform subsequent perceptual actions (e.g. if a robot is
looking for an object)
» Guide the execution of manipulation skills (e.g. to prevent
unsafe motions close to patients in a room)

corridor

N. Siinderhauf et al., “Place categorization and semantic » Detect execution anomalies (e.g. to recognise that a bottle

i bil bot,” in Proc. IEEE Int. Conf. . . . . .
Robotios and Automation (ICRA). 2016, pp. 5750-5736. of medicine is on a coffee table where children can reach it)

Available: https://doi.org/10.1109/ICRA.2016.7487796
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Multimodal Perception

Grasp Lift

» In traditional applications, a robot uses one main modality to
perceive its environment (e.g. a lidar for localisation, a camera for

¥ object detection); a multimodal perception system combines

different modalities (e.g. visual and tactile information)

Rattle

[4
o) el -
Tap
—na
— L}

Push

’4’

Fig. 2: Before and after images of the 10 exploratory behaviors
that the robot used to learn about the objects.

J. Sinapov et al., “Learning relational object categories
using behavioral exploration and multimodal perception,”
in IEEE Int. Conf. Robotics and Automation (ICRA),
2014, pp. 5691-5698. Available:
https://doi.org/10.1109/ICRA.2014.6907696
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Multimodal Perception

Grasp Lift
Wi
Hold Shake
~ 4
- = / .
e S V- e
Rattle Drop

>

In traditional applications, a robot uses one main modality to
perceive its environment (e.g. a lidar for localisation, a camera for
object detection); a multimodal perception system combines
different modalities (e.g. visual and tactile information)

ﬂ = ? » Multimodality is particularly important for exploring the

Poke

Tap
]
T 1

Push

’4’

Fig. 2: Before and after images of the 10 exploratory behaviors
that the robot used to learn about the objects.

J. Sinapov et al., “Learning relational object categories
using behavioral exploration and multimodal perception,”
in IEEE Int. Conf. Robotics and Automation (ICRA),
2014, pp. 5691-5698. Available:
https://doi.org/10.1109/ICRA.2014.6907696
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Multimodal Perception

Grasp Lift
W .. - . . -

3 » In traditional applications, a robot uses one main modality to
i — perceive its environment (e.g. a lidar for localisation, a camera for

Ll 7 object detection); a multimodal perception system combines
different modalities (e.g. visual and tactile information)

Rattle Drop
ﬂ 7 ? » Multimodality is particularly important for exploring the

: : environment efficiently, but also for improving the execution
?i- Poke robustness
Push

’4’

Fig. 2: Before and after images of the 10 exploratory behaviors
that the robot used to learn about the objects.

» Multimodality can be achieved using manual heuristics
(classical approach) or with multimodal neural networks (more
recent approach)

J. Sinapov et al., “Learning relational object categories
using behavioral exploration and multimodal perception,”
in IEEE Int. Conf. Robotics and Automation (ICRA),
2014, pp. 5691-5698. Available:
https://doi.org/10.1109/ICRA.2014.6907696
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Multimodal Perception

Grasp
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TR - » In traditional applications, a robot uses one main modality to

ot — perceive its environment (e.g. a lidar for localisation, a camera for
K - A e object detection); a multimodal perception system combines
‘mhamd®  piad S0 || - e . . . .

I different modalities (e.g. visual and tactile information)

Rattle Drop

ﬁ a » Multimodality is particularly important for exploring the

environment efficiently, but also for improving the execution
Poke robustness

Tap

g
— { 4

Push Press

’ N *

Fig. 2: Before and after images of the 10 exploratory behaviors

» Multimodality can be achieved using manual heuristics
(classical approach) or with multimodal neural networks (more
recent approach)

tht he robot used t0 leam sbout the objects » Multimodal perception is indispensable for human manipulation
J. Sinapo et al., “Learning relational object categories as well (self-experiment: put on gloves — that affect your tactile
using behavioral exploration and multimodal perception,” . .
in IEEE Int. Conf. Robotics and Automation (ICRA), sensing — and try to grasp a bottle with your eyes closed)

2014, pp. 5691-5698. Available:
https://doi.org/10.1109/ICRA.2014.6907696
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Lifelong Object Learning

» Robotic perceptual system are often based on an unreasonable
assumption that all relevant objects are known at design /
robot training time

Result

J. Young et al., “Towards Lifelong Object Learning by
Integrating Situated Robot Perception and Semantic Web
Mining,” in Proc. 22nd European Conf. Atrtificial Intelligence
(ECAI), 2016, pp. 1458-1466. Available:
https://doi.org/10.3233/978- 1-61499-672-9- 1458
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Lifelong Object Learning

Result

J. Young et al., “Towards Lifelong Object Learning by
Integrating Situated Robot Perception and Semantic Web
Mining,” in Proc. 22nd European Conf. Atrtificial Intelligence
(ECAI), 2016, pp. 1458-1466. Available:
https://doi.org/10.3233/978- 1-61499-672-9- 1458
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» Robotic perceptual system are often based on an unreasonable
assumption that all relevant objects are known at design /
robot training time

» In cognition-enabled manipulation, this assumption is relaxed
by allowing the robot to recognise unknown objects and
endowing it with an ability to learn models of them
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Lifelong Object Learning

» Robotic perceptual system are often based on an unreasonable
assumption that all relevant objects are known at design /
robot training time

» In cognition-enabled manipulation, this assumption is relaxed
by allowing the robot to recognise unknown objects and
endowing it with an ability to learn models of them

» Lifelong object learning can be particularly difficult in
connectionist systems because of unwanted forgetting (it is
tricky to guarantee that new information can be incorporated
without forgetting relevant old information)

Result

J. Young et al., “Towards Lifelong Object Learning by
Integrating Situated Robot Perception and Semantic Web
Mining,” in Proc. 22nd European Conf. Atrtificial Intelligence
(ECAI), 2016, pp. 1458-1466. Available:
https://doi.org/10.3233/978- 1-61499-672-9- 1458
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Class Incremental Learning

» Class incremental learning is a lifelong learning technique
based on which new classes are included in a recognition
system over time
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Class Incremental Learning

» Class incremental learning is a lifelong learning technique
based on which new classes are included in a recognition
system over time

» In the context of neural networks, this would mean retraining
the network with the complete (growing) dataset — not
computationally feasible
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Class Incremental Learning

» Class incremental learning is a lifelong learning technique
based on which new classes are included in a recognition
system over time

» In the context of neural networks, this would mean retraining
the network with the complete (growing) dataset — not
computationally feasible

> Typical techniques use exemplars (representative examples of
old classes) instead of keeping the full dataset
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Class Incremental Learning

» Class incremental learning is a lifelong learning technique
based on which new classes are included in a recognition
system over time

» In the context of neural networks, this would mean retraining
the network with the complete (growing) dataset — not
computationally feasible

> Typical techniques use exemplars (representative examples of
old classes) instead of keeping the full dataset

» A potential problem that can appear with this technique is
recency bias (old classes get forgotten, the recognition system
is biased towards recent classes) — but there are some
techniques to address this problem
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Class Incremental Learning

» Class incremental learning is a lifelong learning technique
based on which new classes are included in a recognition
system over time

» In the context of neural networks, this would mean retraining
the network with the complete (growing) dataset — not

computationally feasible

Class 1 Class 2 Class 3

data

A N N

| class-incremental learner

Algorithm 1iCaRL CLASSIFY

input z // image to be classified
require P = (Py,...,P;)  //class exemplar sets
require ¢ : X — R? // feature map

fory=1,...,tdo

e B > @)/ mean-of-exemplars
]

PEP,
end for

output class label y*

y* < argmin ||p(z) — | // nearest prototype
v=1nt

Algorithm 2 iCaRL INCREMENTALTRAIN

input X°,..., X' //training examples in per-class sets

input K // memory size

require © // current model parameters

> Typical techniques use exemplars (representative examples of require P = (Py,...,P,_1)  /lcurrent exemplar sets

old classes) instead of keeping the full dataset

© < UPDATEREPRESENTATION(X®,..., X% P, ©)
m« K/t // number of exemplars per class

fory=1,...,5—1do
P, + REDUCEEXEMPLARSET(P,, m)

»> A potential problem that can appear with this technique is end for

recency bias (old classes get forgotten, the recognition system
is biased towards recent classes) — but there are some

techniques to address this problem
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fory=s,...,tdo

end for

P (Pr,...,P) // new exemplar sets

P, < CONSTRUCTEXEMPLARSET(X,,m, ©)

S. Rebuffi et al., “iCaRL: Incremental Classifier and

Representation Learning,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 2001-2010.

Available: https://doi.org/10.1109/CVPR.2017.587
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Learning-Based Robot Manipulation
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Why Learning-Based Manipulation?

A multitude of reasons — it can equip a robot with an ability to:

Imitate motions or acquire complete behaviour

Improve skills based on experience .
P P models by observing humans

Perform flexible behaviours that are difficult to Independently explore the environment and

@ . . identify causal relationships between its actions
rogram explicitly (such as visuomotor policies !
Prog . y 2 ) and the observed effects

Adapt based on the preferences of human
collaborators
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An (Incomplete) Overview of Learning-Based Manipulation

We will look at these briefly on the next slides; most of them are treated in more detail in my “Robot
Learning” course
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Learning from Demonstration (LfD)

> The most prevalent type of learning-based manipulation is learning from demonstration (also called
imitation learning)
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Learning from Demonstration (LfD)

> The most prevalent type of learning-based manipulation is learning from demonstration (also called
imitation learning)

» In LfD, an expert demonstrator teaches the robot a motion or a complete task
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Learning from Demonstration (LfD)
» The most prevalent type of learning-based manipulation is learning from demonstration (also called
imitation learning)

» In LfD, an expert demonstrator teaches the robot a motion or a complete task

> Particularly in the context of motions, LfD is usually followed by subsequent learning (e.g.
reinforcement learning); the demonstration is thus used to initialise the robot’s execution policy
so that it can then be improved by additional self-learning
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Learning from Demonstration (LfD)

> The most prevalent type of learning-based manipulation is learning from demonstration (also called
imitation learning)

» In LfD, an expert demonstrator teaches the robot a motion or a complete task

> Particularly in the context of motions, LfD is usually followed by subsequent learning (e.g.
reinforcement learning); the demonstration is thus used to initialise the robot’s execution policy
so that it can then be improved by additional self-learning

b Teleoperation C Passive observation

H. Ravichandar et al., “Recent Advances in Robot Learning from Demonstration,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 3, pp. 13:1-34, 2020. Available:
https://doi.org/10.1146 /annurev- control- 100819- 063206
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Dynamic Motion Primitives (DMPs)?

A DMP models trajectories by a second-order differential equation

T=a(Bg—y)—y)+f
Here:
_ i Vi@
Y, Wi(x)

By modifying the weighting terms (learned using weighted linear regression), arbitrary trajectories can
be represented

f) 2 (g w) i(a) = xp (oo - )

2
207

2A. J. Ijspeert et al., “Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors,” Neural Computation, vol. 25, no. 2, pp. 328373, 2013. Available:
https:/ /ieeexplore.ieee.org/document/6797340
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Learning Trajectories Using Gaussian Mixture Models (GMMs)?3

» Motion trajectories can also be represented in a
probabilistic manner — a more appropriate model when
multiple demonstrations are given. A GMM is one
possible representation for this

> For a time-dependent system, the distribution P(t,y) of
time t and trajectory attractor points y is modelled as a
GMM with K componentS'

Z 771 Mz;

» The conditional dIStI’IbutIOn P(y|t) is then found by Gaussian mixture regression:

= S ot + 22 31) 1) B = 3w [2Y - =t () 2

)

NIt

=
<

=1

3Slide fully based on S. Calinon et al., “Statistical dynamical systems for skills acquisition in humanoids,” in Proc. 12th IEEE-RAS Int. Conf. Humanoid Robots (Humanoids), 2012, pp.
323-329. Available: https://doi.org/10.1109/HUMANOIDS.2012.6651539
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Task Learning From Observation

oo o NININ

Segmentation
Keyframe Detection

AP » In observation-based task learning, a robot learns a complete
't model of a task — either for recognising or for performing the

;
S1 Sz S3 Sa Ss
T o wa st ok oox task
€= Roles: manipulator  main  primary  secondary

Relation/State s s s st s
R (manipulator, main) N T T T N
R (manipulator, secondary) A A A A A
R (manipulator, primary) A A A A A
SEC matitx R (main, secondary) N N N T T
R (main, primary) T T N N N
R (secondary, primary) T T T T T
R (main, primary sup.) A A A A A
R(main, secondary sup) T T N N I

am_move arm_move hand

prmitve 1 hand
& preshape (prim)  (sec) felease
Abstract primitives : "
primitve 2 (main) ) T sec) -
primitive 3 hand_grasp. .
Robot Execution ; [ l I

S1 S2 S3 Sa Ss

M. J. Aein et al., “Library of actions: Implementing a generic
robot execution framework by using manipulation action
semantics,” Int. Journal Robotics Research, vol. 38, no. 8, pp.
910-934, 2019. Available:
https://doi.org/10.1177/0278364919850295
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Task Learning From Observation

oo Mo NIV
l .

T iy » In observation-based task learning, a robot learns a complete
v ¢ model of a task — either for recognising or for performing the
S1 Sz S3 Sa Ss

Obects ang  bucet  The  Box task
jl nwesenn v v 1~ p This is particularly useful for recognition if a robot can
learn from a large video dataset — demonstrations are then
Jl e S S S S given “for free”

prmitve 1
preshape (prim)  (sec) _release
Abstract primitives : "
primitive 2 - -

Jl

Robot Execution

M. J. Aein et al., “Library of actions: Implementing a generic
robot execution framework by using manipulation action
semantics,” Int. Journal Robotics Research, vol. 38, no. 8, pp.
910-934, 2019. Available:
https://doi.org/10.1177/0278364919850295
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Task Learning From Observation
celowe NN

T - » In observation-based task learning, a robot learns a complete
v Yo 7 f model of a task — either for recognising or for performing the
S1 S2 S3 Sa Ss
objects Had  Bucket  Table Box task

Determine
Objects

jl sommwemn o« 111~ B This is particularly useful for recognition if a robot can
learn from a large video dataset — demonstrations are then
Jl e S S S S given “for free”

Gy 0 T - » Learning models for execution usually requires data other
Jl than images (e.g. skeleton recordings)

Robot Execution

M. J. Aein et al., “Library of actions: Implementing a generic
robot execution framework by using manipulation action
semantics,” Int. Journal Robotics Research, vol. 38, no. 8, pp.
910-934, 2019. Available:
https://doi.org/10.1177/0278364919850295
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Task Learning From Observation
celowe NN

Se e gee paa 3 » In observation-based task learning, a robot learns a complete
A SR AR model of a task — either for recognising or for performing the
task

jl fwewws v+ 1« p This is particularly useful for recognition if a robot can
learn from a large video dataset — demonstrations are then
[ EEE DL iven orfree!

G - ) i » Learning models for execution usually requires data other
Jl than images (e.g. skeleton recordings)

» Typically used in cognitivist and hybrid systems — the learning
process involves grounding symbols of observed entities

M. J. Aein et al., “Library of actions: Implementing a generic
robot execution framework by using manipulation action
semantics,” Int. Journal Robotics Research, vol. 38, no. 8, pp.
910-934, 2019. Available:
https://doi.org/10.1177/0278364919850295
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Active Manipulation Task Learning

Chop
Carrots,

Knife
Carrots

Get
Knife

Chop
Celery

Chop
Carrots
SMDP Graph

Knife, Carrots, Celery

Knife,
Carrots,
Celery

Knife
SMDP Dual Graph

B. Hayes and B. Scassellati, “Discovering task constraints through
observation and active learning,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), 2014, pp. 4442-4449. Available:
https://doi.org/10.1109/IR0S.2014.6943191
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» During task learning, a robot doesn't have to be a passive

observer — it can also actively participate in the
learning process by posing disambiguating queries
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Active Manipulation Task Learning

Chop
Celery Carrots

SMDP Graph

Knife, Carrots, Celery

Knife,
Carrots,
Celery

Knife

SMDP Dual Graph

B. Hayes and B. Scassellati, “Discovering task constraints through
observation and active learning,” in Proc. IEEE/RSJ Int. Conf.

Intelligent Robots and Systems (IROS), 2014, pp. 4442-4449. Available:

https://doi.org/10.1109/IR0OS.2014.6943191
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During task learning, a robot doesn't have to be a passive
observer — it can also actively participate in the
learning process by posing disambiguating queries

This is particularly important if multiple distinct
demonstrations (from multiple teachers) are received —
actively asking queries will allow the robot to identify
actions:

Institute for Al and

3

Autonomous Systems Cognition-Enabled Manipulation: An Overview 27 /41


https://doi.org/10.1109/IROS.2014.6943191

Active Manipulation Task Learning
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B. Hayes and B. Scassellati, “Discovering task constraints through
observation and active learning,” in Proc. IEEE/RSJ Int. Conf.

Intelligent Robots and Systems (IROS), 2014, pp. 4442-4449. Available:

https://doi.org/10.1109/IR0OS.2014.6943191
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During task learning, a robot doesn't have to be a passive
observer — it can also actively participate in the
learning process by posing disambiguating queries

This is particularly important if multiple distinct
demonstrations (from multiple teachers) are received —
actively asking queries will allow the robot to identify
actions:

» whose ordering is not strictly important
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Active Manipulation Task Learning

Chop
Celery Carrots

SMDP Graph

Knife, Carrots, Celery
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B. Hayes and B. Scassellati, “Discovering task constraints through
observation and active learning,” in Proc. IEEE/RSJ Int. Conf.

Intelligent Robots and Systems (IROS), 2014, pp. 4442-4449. Available:

https://doi.org/10.1109/IR0OS.2014.6943191
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During task learning, a robot doesn't have to be a passive
observer — it can also actively participate in the
learning process by posing disambiguating queries

This is particularly important if multiple distinct
demonstrations (from multiple teachers) are received —
actively asking queries will allow the robot to identify
actions:

» whose ordering is not strictly important or

» which are optional in the task
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Visuomotor Policies

» An execution policy that continuously maps perceptual input to motor actions is called a
visuomotor policy
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Visuomotor Policies
» An execution policy that continuously maps perceptual input to motor actions is called a
visuomotor policy

» As the name suggests, the perceptual input needs to include visual data, although other
modalities are sometimes combined as well
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Visuomotor Policies
» An execution policy that continuously maps perceptual input to motor actions is called a
visuomotor policy

» As the name suggests, the perceptual input needs to include visual data, although other
modalities are sometimes combined as well

» Conceptually, visuomotor policies mimic the way people manipulate — our manipulation
actions are always driven by perceptual input and we don’t need to always replan trajectories
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Visuomotor Policies
» An execution policy that continuously maps perceptual input to motor actions is called a
visuomotor policy

» As the name suggests, the perceptual input needs to include visual data, although other
modalities are sometimes combined as well

» Conceptually, visuomotor policies mimic the way people manipulate — our manipulation
actions are always driven by perceptual input and we don’t need to always replan trajectories

» Advances in deep learning have made visuomotor policies practically feasible; such policies are often
trained using deep reinforcement learning

RGB image convi conv2 conv3 spatial sofimax feature motor
4 points torques

S \\54 filters ™32 distributions] -, i
Tx7 conv fully fully fully
stride 2 5x5 conv expected connected | connected [ connected JESSE
RelLU RelU ’ZD position RelU RelU linear

Il 4240 113 109 40 40 7

s B4
109

rabot
configuration
39

S. Levine et al., “End-to-End Training of Deep Visuomotor Policies,” Journal of Machine Learning Research, vol. 17, no. 1, pp. 1334-1373, Jan. 2016. Available:
https://jmlr.org/papers/v17/15-522.html
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Inverse Reinforcement Learning (IRL)

function

Policy o
trajectories

Expert Autonomous Learner

Algorithm 1: Template for IRL
Tnput: M\, = (S, A, T,7),
Set of trajectories demonstrating desired behavior:
D = {{(50,0), (81,@1), -+, (86,02)), .-}, 8¢ € S, ar € A, t €N,
or expert’s policy: 7g, and reward function features
Output: Rp

1 Model the expert’s observed behavior as the solution of an MDP whose
reward function is not known;

2 Initialize the parameterized form of the reward function using any given
features (linearly weighted sum of feature values, distribution over
rewards, or other);

3 Solve the MDP with current reward function to generate the learned
behavior or policy;

4 Update the optimizati to minimize the di between
the observed behavior (or policy) and the learned behavior (policy);

5 Repeat the previous two steps till the divergence is reduced to a desired
level.

S. Arora and P. Yoshi, “A survey of inverse reinforcement
learning: Challenges, methods and progress,” Artificial
Intelligence, vol. 297, pp. 103500:1-28, Aug. 2021. Available:
https://doi.org/10.1016 /j.artint.2021.103500
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function to learn from is given — that is, however, not always

the case
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Inverse Reinforcement Learning (IRL)

States, Actions,

Transition
e > In robot (reinforcement) learning, we assume that a reward
function to learn from is given — that is, however, not always
Export Autonomous Learner the case
Algorithm 1: Template for IRL . . .
Toput: M5, = (5 AT T, » The goal of IRL is to estimate the reward function that a
Set of trajectories demonstrating desired behavior: . B
o lae ool haehucasen, human expert is following
Output: Rp

1 Model the expert’s observed behavior as the solution of an MDP whose
reward function is not known;

2 Initialize the parameterized form of the reward function using any given
features (linearly weighted sum of feature values, distribution over
rewards, or other);

3 Solve the MDP with current reward function to generate the learned
behavior or policy;

4 Update the optimizati to minimize the di between
the observed behavior (or policy) and the learned behavior (policy);

5 Repeat the previous two steps till the divergence is reduced to a desired
level.

S. Arora and P. Yoshi, “A survey of inverse reinforcement
learning: Challenges, methods and progress,” Artificial
Intelligence, vol. 297, pp. 103500:1-28, Aug. 2021. Available:
https://doi.org/10.1016 /j.artint.2021.103500
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Inverse Reinforcement Learning (IRL)

States, Actions,
Transition

function

> In robot (reinforcement) learning, we assume that a reward

function to learn from is given — that is, however, not always

Export Autonomous Learner the case
Algorithm 1: Template for IRL . . .
Toguts Moere (AT, » The goal of IRL is to estimate the reward function that a

Set of trajectories demonstrating desired behavior: . .
'D:(((sn.,a"),»(uhm) ..... (R,,al)),...)A.SyES.G'EA,I.E N, human expert IS fo”own‘]g
or expert’s policy: 7z, and reward function features
Output: Rp
1 Model the expert’s observed behavior as the solution of an MDP whose
reward function is not known; H H H H . H
» Iitializ the parameteized form of the reward function usng any given > A typical IRL learning loop involves (i) finding a reward
features (linearly weighted sum of feature values, distribution over . .. . . . . .
revards, o othr): estimate and (ii) learning a policy with the estimate until
3 Solve the MDP with current reward function to generate the learned
behavior or policy; . .
« Update the optimivat {0 miimize the divergence between the learned policy corresponds to the observed policy
the observed behavior (or policy) and the learned behavior (policy);
5 Repeat the previous two steps till the divergence is reduced to a desired
level.

S. Arora and P. Yoshi, “A survey of inverse reinforcement
learning: Challenges, methods and progress,” Artificial
Intelligence, vol. 297, pp. 103500:1-28, Aug. 2021. Available:
https://doi.org/10.1016 /j.artint.2021.103500
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Inverse Reinforcement Learning (IRL)

States, Actions,

Transition
function

Policy or

Expert Autonomous Learner

Algorithm 1: Template for IRL
Tnput: M\, = (S, A, T,7),
Set of trajectories demonstrating desired behavior:
D = {{(0,0), (51,1), - -, (56, 0)), -}, 50 € S, ar € A, t EN,
or expert’s policy: 7z, and reward function features
Output: Rp

1 Model the expert’s observed behavior as the solution of an MDP whose
reward function is not known;

2 Initialize the parameterized form of the reward function using any given
features (linearly weighted sum of feature values, distribution over
rewards, or other);

3 Solve the MDP with current reward function to generate the learned
behavior or policy;

4 Update the optimizati to minimize the di between
the observed behavior (or policy) and the learned behavior (policy);

5 Repeat the previous two steps till the divergence is reduced to a desired
level.

S. Arora and P. Yoshi, “A survey of inverse reinforcement
learning: Challenges, methods and progress,” Artificial
Intelligence, vol. 297, pp. 103500:1-28, Aug. 2021. Available:
https://doi.org/10.1016 /j.artint.2021.103500
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In robot (reinforcement) learning, we assume that a reward
function to learn from is given — that is, however, not always
the case

The goal of IRL is to estimate the reward function that a
human expert is following

A typical IRL learning loop involves (i) finding a reward
estimate and (ii) learning a policy with the estimate until
the learned policy corresponds to the observed policy

Conceptually, IRL corresponds very closely to how human
apprentices learn by observing experts
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Causal Learning

» Typical machine learning leads to learning correlations, not necessarily causations (for
example, this is one reason why deep learning-based models can be vulnerable to trivial adversarial
attacks)
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Causal Learning

» Typical machine learning leads to learning correlations, not necessarily causations (for
example, this is one reason why deep learning-based models can be vulnerable to trivial adversarial
attacks)

» Causal learning can have a variety of purposes, such as:
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Causal Learning

» Typical machine learning leads to learning correlations, not necessarily causations (for
example, this is one reason why deep learning-based models can be vulnerable to trivial adversarial
attacks)

» Causal learning can have a variety of purposes, such as:
» Finding out which parameters are actually relevant for learning a given skill (from a given set of
parameters, not all of which may be important for the skill)
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Causal Learning

» Typical machine learning leads to learning correlations, not necessarily causations (for
example, this is one reason why deep learning-based models can be vulnerable to trivial adversarial
attacks)

» Causal learning can have a variety of purposes, such as:

» Finding out which parameters are actually relevant for learning a given skill (from a given set of
parameters, not all of which may be important for the skill)
» ldentifying dependences between skills (information that is useful for fault analysis)

> Successful causal learning requires the ability to perform interventions (either in the real world or
in a simulated model) — identifying causality requires different hypotheses to be tested and
incorrect ones to be eliminated
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Causal Learning

» Typical machine learning leads to learning correlations, not necessarily causations (for
example, this is one reason why deep learning-based models can be vulnerable to trivial adversarial
attacks)

» Causal learning can have a variety of purposes, such as:
» Finding out which parameters are actually relevant for learning a given skill (from a given set of
parameters, not all of which may be important for the skill)
» ldentifying dependences between skills (information that is useful for fault analysis)

> Successful causal learning requires the ability to perform interventions (either in the real world or
in a simulated model) — identifying causality requires different hypotheses to be tested and
incorrect ones to be eliminated

Observation Causal Hypotheses Experiments

Observe Recognize Extract Temporal Seloct Verify in Mental ot
Instrumental Dependency

Human Activities Activities Co-Occurrences I Action Candidates Simulation Graph

C. Uhde et al., “The Robot as Scientist: Using Mental Simulation to Test Causal Hypotheses Extracted from Human Activities in Virtual Reality,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS), 2020, pp. 8081-8086. Available: https://doi.org/10.1109/IROS45743.2020.9341505
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Knowledge for Manipulation
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Useful Types of Knowledge for Cognition-Enabled Manipulation

Different types of knowledge can facilitate cognition-enabled manipulation:

Specify properties of objects that a robot needs Represent the robot’s up-to-date belief about the
to manipulate, or relations and similarities state of the world — the objects and other
between objects agents in it

Allow knowledge reuse among agents Enable joint task and motion planning

Facilitate subsequent learning and knowledge
transfer
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Systems, vol. 61, no. 2, pp. 95-105, Feb. 2013. Available:
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» A world model is a representation that specifies the robot’s
belief about various relevant properties of the world
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» A world model enables a robot to:
» Keep track of dynamic changes in the world
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» A world model is a representation that specifies the robot’s

belief about various relevant properties of the world

» A world model enables a robot to:

» Keep track of dynamic changes in the world

» Actively explore hypotheses in order to improve its belief
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» A world model is a representation that specifies the robot’s
belief about various relevant properties of the world

» A world model enables a robot to:
» Keep track of dynamic changes in the world
» Actively explore hypotheses in order to improve its belief

» Communicate its belief to other agents during collaborative
execution
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» A world model is a representation that specifies the robot’s
belief about various relevant properties of the world

» A world model enables a robot to:
» Keep track of dynamic changes in the world
» Actively explore hypotheses in order to improve its belief

» Communicate its belief to other agents during collaborative
execution

» Different representations used in cognitivist and emergent
systems
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Object Ontologies

» An ontology allows specifying information about an

environment using description logic

M. Tenorth and M. Beetz, “KnowRob: A knowledge processing
infrastructure for cognitionenabled robots,” Int. Journal
Robotics Research, vol. 32, no. 5, pp. 566-590, 2013.
Available: https://doi.org/10.1177/0278364913481635
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Object Ontologies

» An ontology allows specifying information about an
environment using description logic

» An ontology consist of two components:

» A terminological box (TBox), which includes concepts (e.g.
objects) and relations between them

» An assertional box (ABox), which includes instantiations of
the concepts and relations

» We generally distinguish between two types of ontologies:

» An upper-level ontology that specifies common concepts and
relations that hold across domains

M. Tenorth and M. Beetz, “KnowRob: A knowledge processing » A domain-specific ontology that instantiates an upper-level
infrastructure for cognitionenabled robots,” Int. Journal . . e .
Robotics Research, vol. 32, no. 5, pp. 566-500, 2013. ontology or extends it with terms that are specific to a given

Available: https://doi.org/10.1177/0278364913481635 i
domain
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Object Ontologies

» An ontology allows specifying information about an
environment using description logic

» An ontology consist of two components:

» A terminological box (TBox), which includes concepts (e.g.
objects) and relations between them

» An assertional box (ABox), which includes instantiations of
the concepts and relations

» We generally distinguish between two types of ontologies:

» An upper-level ontology that specifies common concepts and
relations that hold across domains

M. Tenorth and M. Beetz, “KnowRob: A knowledge processing » A domain-specific ontology that instantiates an upper-level
infrastructure for cognitionenabled robots,” Int. Journal . . e .
Robotics Research, vol. 32, no. 5, pp. 566-500, 2013. ontology or extends it with terms that are specific to a given

Available: https://doi.org/10.1177/0278364913481635 i
domain

» Only used in cognitivist and hybrid cognitive systems
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Task and Motion Planning (TAMP)

C. R. Garrett et al. “Integrated task and motion planning,”
Annual review of control, robotics, and autonomous systems,
vol. 4, pp. 265-293, 2021. Available:
https://doi.org/10.1146 /annurev- control-091420- 084139
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Task and Motion Planning (TAMP)

» Task and motion planning is the act of performing
simultaneous task planning and robot motion planning
before a robot starts with the execution of a task

» TAMP requires not only planning models of actions (in
terms of preconditions and effects), but also predictive
execution models so that the most appropriate execution
parameters can be identified

C. R. Garrett et al. “Integrated task and motion planning,”
Annual review of control, robotics, and autonomous systems,
vol. 4, pp. 265-293, 2021. Available:
https://doi.org/10.1146 /annurev- control-091420- 084139

O . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

‘ Institute for Al and
Autonomous Systems Cognition-Enabled Manipulation: An Overview 35 /41


https://doi.org/10.1146/annurev-control-091420-084139

Task and Motion Planning (TAMP)

» Task and motion planning is the act of performing
simultaneous task planning and robot motion planning
before a robot starts with the execution of a task

» TAMP requires not only planning models of actions (in
terms of preconditions and effects), but also predictive
execution models so that the most appropriate execution
parameters can be identified

C. R. Garrett et al. “Integrated task and motion planning,”
Annual review of control, robotics, and autonomous systems,
vol. 4, pp. 265-293, 2021. Available:

hetps:/ /doi.org/10.1146 /annurev-control- 091420-084139 » Particularly useful if the robot’s operation is not interrupted by
other agents
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Knowledge Sharing Between Robots

» Cognitive manipulation can also be facilitated by enabling
robots to reuse knowledge that other robots possess

.
Somanit Query
M. Waibel et al., “RoboEarth,” in IEEE Robotics &
Automation Magazine, vol. 18, no. 2, pp. 69-82, June 2011.
Available: https://doi.org/10.1109/MRA.2011.941632
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Knowledge Sharing Between Robots

» Cognitive manipulation can also be facilitated by enabling
robots to reuse knowledge that other robots possess

» Such knowledge exchange can be done either between
members of a multi-robot team (using network
communication) or even between completely distinct robots
(through web-based services)

Somani® Query
M. Waibel et al., “RoboEarth,” in IEEE Robotics &
Automation Magazine, vol. 18, no. 2, pp. 69-82, June 2011.
Available: https://doi.org/10.1109/MRA.2011.941632
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Knowledge Sharing Between Robots

» Cognitive manipulation can also be facilitated by enabling
robots to reuse knowledge that other robots possess

» Such knowledge exchange can be done either between
members of a multi-robot team (using network
communication) or even between completely distinct robots
(through web-based services)

» Successful knowledge sharing requires:

Semantt Query

M. Waibel et al., “RoboEarth,” in IEEE Robotics & » A common knowledge representation framework (e.g. a
Automation Magazine, vol. 18, no. 2, pp. 69-82, June 2011.
Available: https://doi.org/10.1109/MRA.2011 041632 knowledge graph)

» A unified querying language for knowledge retrieval
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Prior Learned Experiences: Foundation Models
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R. Bommasani et al. “"On the opportunities and risks of
foundation models,” CoRR, vol. 2108.07258, 2021. Available:
https:/ /arxiv.org/abs/2108.07258
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leads to a question of how the knowledge in such models
can be transferred to different tasks

Tasks

oate ~ :'::: » A foundation model is a large neural network model that is
- ¢ %= trained on a large dataset (potentially including different
S~ — O _ ¢=" modalities); this is then adapted (fine-tuned) for a concrete
=4 ™ € gy task (with task-specific data)

st i & *&m

G e Sl

R. Bommasani et al. “"On the opportunities and risks of
foundation models,” CoRR, vol. 2108.07258, 2021. Available:
https:/ /arxiv.org/abs/2108.07258

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Cognition-Enabled Manipulation: An Overview 37 /41


https://arxiv.org/abs/2108.07258

Prior Learned Experiences: Foundation Models

» The training of large data-driven models for different tasks
leads to a question of how the knowledge in such models
can be transferred to different tasks

Tasks

oate & :“:u: » A foundation model is a large neural network model that is
- ¢ %= trained on a large dataset (potentially including different
S @ . &= modalities); this is then adapted (fine-tuned) for a concrete
=4 ™ ® =g task (with task-specific data)
PYES & *wﬂﬂw
Yy » Foundation models can be used in emergent and hybrid

cognitive architectures
R. Bommasani et al. “"On the opportunities and risks of
foundation models,” CoRR, vol. 2108.07258, 2021. Available:
https:/ /arxiv.org/abs/2108.07258
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Prior Learned Experiences: Foundation Models

» The training of large data-driven models for different tasks
leads to a question of how the knowledge in such models
can be transferred to different tasks

Tasks

6 =lg

o _ e » A foundation model is a large neural network model that is
SN ¢ &= trained on a large dataset (potentially including different
S @ & modalities); this is then adapted (fine-tuned) for a concrete
= € Fmg task (with task-specific data)
0 5mc g & *mﬂh
Yy » Foundation models can be used in emergent and hybrid

cognitive architectures
R. Bommasani et al. “"On the opportunities and risks of
foundation models,” CoRR, vol. 2108.07258, 2021. Available:

hitpe:/ariv.orgabs/ 2106.07258 » Foundation models are very large networks (which makes them

inherently non-transparent — by themselves, not ideal for
trustworthy robots)
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Execution Monitoring and Failure Recovery
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Execution Anomaly Detection

» A cognition-enabled manipulation system needs to be able to
recognise cases in which the execution does not proceed
as expected
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Execution Anomaly Detection

» A cognition-enabled manipulation system needs to be able to
recognise cases in which the execution does not proceed
as expected

» Anomaly detection is a procedure of identifying time points
at which such unexpected events occur
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Execution Anomaly Detection

» A cognition-enabled manipulation system needs to be able to
recognise cases in which the execution does not proceed
as expected

» Anomaly detection is a procedure of identifying time points
at which such unexpected events occur

» Note that anomalies and failures are not necessarily
equivalent: a failure is an anomaly, but the opposite does not
necessarily hold
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Execution Anomaly Detection

» A cognition-enabled manipulation system needs to be able to
recognise cases in which the execution does not proceed
as expected

» Anomaly detection is a procedure of identifying time points
at which such unexpected events occur

» Note that anomalies and failures are not necessarily
equivalent: a failure is an anomaly, but the opposite does not
necessarily hold

» Anomaly (or failure detection) is a prerequisite for subsequent
execution recovery
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Execution Anomaly Detection
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A. Inceoglu et al., "Failure Detection Using Proprioceptive,

» Anomaly detection is a procedure of identifying time points Auditory and Visual Modalities,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), 2018, pp. 2491-2496.

at which such unexpeCted events occur Available: https://doi.org/10.1109/IROS.2018.8594169

» Note that anomalies and failures are not necessarily
equivalent: a failure is an anomaly, but the opposite does not
necessarily hold

» Anomaly (or failure detection) is a prerequisite for subsequent
execution recovery

S. Thoduka et al., “Using Visual Anomaly Detection for Task
Execution Monitoring,” in Proc. IEEE/RSJ Int. Conf.
Intelligent Robots and Systems (IROS), 2021, pp. 4604-4610.
Available: https://doi.org/10.1109/IROS51168.2021.9636133
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Execution Failure Recovery

» Anomaly detection is useful to the execution of
manipulation skills if it is followed by a
subsequent recovery
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Execution Failure Recovery

» Anomaly detection is useful to the execution of
manipulation skills if it is followed by a
subsequent recovery

» Execution failure recovery is a procedure of
performing actions that remedy the
execution and enable the original execution
to be continued
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Execution Failure Recovery

» Anomaly detection is useful to the execution of
manipulation skills if it is followed by a
subsequent recovery

» Execution failure recovery is a procedure of
performing actions that remedy the
execution and enable the original execution
to be continued

» Often, recovery is done by a simple heuristic
(e.g. repeating the failed skill); a cognitive
robot should be able to recover more
effectively by identifying and using
information about the failure
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Execution Failure Recovery

» Anomaly detection is useful to the execution of
manipulation skills if it is followed by a
subsequent recovery

» Execution failure recovery is a procedure of
performing actions that remedy the
execution and enable the original execution
to be continued

» Often, recovery is done by a simple heuristic
(e.g. repeating the failed skill); a cognitive
robot should be able to recover more
effectively by identifying and using
information about the failure

International Center fo
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S. Mukherjee et al., “Reactive Long Horizon Task Execution via Visual Skill and
Precondition Models,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(IROS), 2021, pp. 5717-5724. Available:
https:/ /doi.org/10.1109/IROS51168.2021.9636037
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Conclusion: What is Cognition-Enabled Robot Manipulation?

» Cognition-enabled manipulation enhances traditional robot manipulation with capabilities
associated with cognitive agents, such as:

» the ability to use knowledge about the environment
» deal with varied perceptual signals
» learn from experience

» identify and resolve execution failures

» Through its various elements, cognition-enabled manipulation increases the practical capabilities
of a robot and enhances the suitability of manipulation-based systems for everyday,
human-centred environments
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