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Mapping Preliminaries
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What is Mapping?

▶ As discussed in our previous lectures, a robot
needs an environment representation so that it
can act autonomously in an environment

▶ A representation that enables autonomous
navigation is referred to as a map — the process
of creating a map is called mapping

▶ Particularly for planar navigation, occupancy
grids are quite commonly used A partial occupancy grid map of the second floor of the H-BRS C building
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Challenges of Mapping

▶ The primary problem with mapping is that creating a map requires the robot’s location to be
given at all times, but determining the location needs a map to be provided

▶ Mapping and localisation is thus a chicken-and-egg problem

▶ All mapping procedures involve processing perceptual features and representing those in a map, but
the quality and uniqueness of mapping depends on the types of features that are used for
mapping

▶ Think about how people map environments — we need distinguishing features (e.g. flashy billboards)
rather than unremarkable features (e.g. trees that all look the same)

▶ A robot may also have multiple sensors and thus create multiple maps; in this case, there is a need
to combine maps that are based on multiple sensor modalities
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Mapping and Feature Correspondences

Examples of visual feature correspondences. Taken from E.
Delponte et al., “SVD-matching using SIFT features,” Graphical

models, vol. 68, no. 5-6, pp. 415–431, 2006.

▶ Except in cases where perceptual features have unique IDs
(e.g. unique QR codes), a correspondence problem
needs to be resolved during mapping

▶ The correspondence problem is concerned with the
identification of feature identities: an observed feature
should either be matched with known features or be
identified as a new feature

▶ This is a challenging optimisation problem — matching
is typically performed by minimising a distance metric
to existing features

▶ The main challenge stems from perceptual ambiguities
— distinct features may look indistinguishable from
different views

▶ Computational cost is also a challenge — the
optimisation problem needs to be resolved continuously, as
a robot moves around and collects new measurements
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Mapping and Environment Representations

Occupancy grid created using a 2D laser
3D point cloud map created from RGB-D measurements. Taken from E. Sandström, Erik et
al., “Point-SLAM: Dense Neural Point Cloud-based SLAM,” in Proc. IEEE/CVF Int. Conf.

Computer Vision, 2023.

▶ The exact manner in which mapping is performed strongly depends on the representation that is
used to represent the map

▶ Mapping is a very active research field, with new approaches being regularly proposed

▶ There are, however, various commonalities between different mapping techniques, which we
attempt to discuss today

▶ We will start with the simplest type of mapping: 2D occupancy grid mapping
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Occupancy Grid Mapping
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Reminder: 2D Occupancy Grid

▶ A 2D occupancy grid is a two-dimensional discrete map that
represents an environment by a set of grid cells, each of
which has an occupancy probability

▶ We can define an occupancy grid to have the form
MOC = (w, h, r, ox, oy, OC), where:

▶ r is the grid cell resolution (e.g. in meters)

▶ w and h are the map’s width and height, respectively

▶ ox and oy represent the coordinates of the map’s origin
point (in continuous coordinates)

▶ OC ∈ Rh×w is an occupancy probability matrix, namely
OCi,j ∈ [0, 1], 1 ≤ i ≤ h, 1 ≤ j ≤ w

▶ 2D occupancy grid can be acquired from 2D measurements
and are very commonly used in (indoor) robotics

Simultaneous Localisation and Mapping (SLAM) 9 / 33



Occupancy Grid Mapping Formalisation

▶ The overall objective of the occupancy grid mapping process is to approximate the posterior
occupancy distribution given the robot’s movements and measurements:

p(OC|x0:t,u0:t, z1:t)

▶ A common assumption made in occupancy grid mapping is that the occupancy probabilities are
independent of each other, in which case the map probability is written as

p(OC|x0:t,u0:t, z1:t) =

h∏
i=1

w∏
j=1

p(OCi,j |x0:t,u0:t, z1:t)

▶ Due to potential numerical instabilities, occupancy grids are often represented through the log
odds instead of through the occupancy probabilities directly:

LOCi,j = ln
OCi,j

1−OCi,j
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Occupancy Grid Mapping Algorithm

1: function OCCUPANCYGRIDMAPPING(LOC, xt, zt)
2: for i ← 1 to h do
3: for j ← 1 to w do
4: if LOCi,j in the field of zt then
5: LOCi, j← LOCi, j + InverseSensorModel((xLOCi,j

, yLOCi,j
),xt,zt)− l0

6: return LOC

▶ Given the current robot’s state xt and a measurement zt, the idea behind occupancy grid mapping
is to update the occupancy probabilities of only those cells that fall within the sensor’s
field of view

▶ Measurements are noisy! Because of this, the update of those cells uses an inverse sensor model
p(LOCi, j|zt)

▶ The algorithm updates the occupancies continuously, based on every new evidence —
dynamic obstacles that disappear quickly will thus not affect the mapping process significantly
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Inverse Sensor Model

1: function INVERSESENSORMODEL((xi,j , yi,j), (xt, yt, θt), zt)

2: r ←
√

(xi,j − xt)2 + (yi,j − yt)2

3: ϕ ← atan2(yi,j − yt, xi,j − xt)− θt
4: k ← argmin

j
|ϕ− θzj |

5: if r > min(zmax,ztk + α/2) or |ϕ− θzk | > β/2 then
6: return l0
7: if zk

t < zmax and |r − zk
t | < α/2 then

8: return locc
9: if r ≤ ztk then

10: return lfree

▶ The algorithm above is an inverse sensor model for a range sensor (e.g. a lidar), which returns
the occupancy log odds:

li,j = ln
p(OCi,j |xt, zt)

1− p(OCi,j |xt, zt)

▶ The above model is specified for an angular range β and a distance tolerance α

▶ In general, such an inverse sensor model can be learned
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Occupancy Grid Mapping Illustration

Real environment

β

α

Mapping: t = 1
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Occupancy Grid Mapping Illustration

Real environment Mapping: t = 2
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Occupancy Grid Mapping Illustration

Real environment Mapping: t = 3
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Occupancy Grid Mapping Illustration: Dynamic Obstacle

Real environment Mapping: t = 1
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Occupancy Grid Mapping Illustration: Dynamic Obstacle

Real environment Mapping: t = 3
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Occupancy Grid Mapping Challenges

▶ The main problem of this mapping technique is that the
poses are supposed to be known — perfect, noise-free
motion is thus assumed

▶ In reality, robot motions are noisy and will accumulate over
time if not corrected — this can lead a map to drift away

▶ The occupancy grid mapping algorithm does not perform loop
closure — recognising that a landmark has previously been
seen and correcting the estimate accordingly

▶ A more general technique is thus needed — one that enables a
robot to recover from the accumulation of motion errors

Without loop closure and correction for a robot’s noisy
motion, an inaccurate map will be created
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Simultaneous Localisation and Mapping (SLAM)
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What is SLAM?

▶ SLAM is a technique based on which a robot can create an environment map while
determining the pose at the same time

▶ SLAM thus aims to resolve the main problem of mapping techniques that assume perfect robot motion

▶ The ultimate objective of SLAM is to create an accurate environment map that can
subsequently be used for localisation

▶ Thus, SLAM is a mapping technique at its core — the output of the procedure is the map, while the
robot’s pose estimates are typically discarded in the end
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SLAM Formalisation

▶ The obvious way of defining SLAM is that of computing the distribution of the current pose
along with the map, given all motion commands and measurements — referred to as the online
SLAM problem:

p(xt,M |u0:t, z1:t)

▶ In general, we may also be interested in the distribution of the full path along with the map —
this is referred to as the full SLAM problem:

p(x0:t,M |u0:t, z1:t)

▶ SLAM is typically performed by finding correspondences between landmarks; considering
correspondences explicitly, the SLAM problem can be defined as follows:

▶ Online SLAM Problem with correspondences: p(xt, ct,M |u0:t,z1:t)

▶ Full SLAM Problem with correspondences: p(x1:t, c1:t,M |u0:t,z1:t)
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How is SLAM Performed?

▶ There is no single way of performing SLAM, but, just like in the case of localisation, many SLAM
techniques are based on Bayesian filtering

▶ A typical SLAM algorithm performs the following steps continuously:

1. A motion update is performed based on a robot’s motion command

2. Sensor measurements are collected, and feature extraction is performed

3. Feature predictions are made based on the robot’s hypothesised location

4. A solution to the correspondence problem is found

5. The existing features are updated as necessary, or a new feature is recorded in the map

▶ SLAM algorithms differ in the way in which they perform the above steps
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SLAM Challenges

▶ Unlike localisation, SLAM is a high-dimensional problem — the map features and feature
correspondences need to be considered in addition to the pose

▶ SLAM also requires a solution to the correspondence problem, which is challenging in general —
not just in the context of SLAM

▶ The incorporation of new information into existing maps is also generally difficult — dynamic
mapping may lead to deterioration of known maps
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SLAM Algorithms
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SLAM Techniques

▶ On the following slides, we will look at two major SLAM techniques:

EKF SLAM
A SLAM algorithm that uses an extended
Kalman filter

FastSLAM
An algorithm using a Rao-Blackwellised particle
filter (combining a particle filter with EKFs)

▶ We will also take a very brief look at visual SLAM — the currently predominant SLAM paradigm
using visual information
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EKF SLAM

▶ In EKF SLAM, the state representation combines the robot’s pose with the positions and
identities of the features in the map; considering N features mi, 1 ≤ i ≤ N with positions
(mix ,miy ) and identities mis , the state in EKF SLAM is represented as

yt =
(
xt m

)T
=

(
x y θ m1x m1y m1s ... mNx

mNy
mNs

)T
▶ EKF SLAM can be performed relatively easily if the feature identities are known (e.g. if features

have unique identities that can be easily identified)

▶ In the more general case of unknown feature identities, the algorithm needs to solve the
correspondence problem
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EKF SLAM with Known Correspondences

Motion update of the robot’s pose

Initialisation of a new feature’s position

Measurement prediction

Measurement update
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EKF SLAM with Unknown Correspondences
In the unknown correspondence case, each observed feature is either matched to one of the
known features — for instance, using maximum likelihood estimation — or a new feature is added if
all known features exceed a distance threshold

Similarity calculation

Similarity maximisation
to existing features or
adding a new feature
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Problems with EKF SLAM

▶ Just as in the localisation case, only a single hypothesis is pursued by EKF SLAM — additional
recovery procedures need to be implemented to recover from a localisation loss

▶ With a large number of features, EKF SLAM needs to work with large matrices (in the order of the
number of features N) — the algorithm can thus be memory and computationally expensive

▶ The algorithm does not consider features that have not been observed, but which should
have been under the pose hypothesis
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FastSLAM

▶ FastSLAM is a particle filter-based SLAM algorithm that solves the full SLAM problem

▶ As in EKF SLAM, the state representation combines the robot’s path and the states of
features, such that each feature is represented by an extended Kalman filter

▶ Thus, each feature mi, 1 ≤ i ≤ N has an associated Gaussian distribution µi,Σi

▶ Each particle pj , 1 ≤ j ≤ M in FastSLAM is represented as follows:

pj =
[
(x1, y1, θ1) , . . . , (xt, yt, θt) , (µ1,Σ1) , . . . , (µN ,ΣN ) , wj

]
▶ FastSLAM is based on an insight that poses and features are conditionally independent

given the control updates, measurements, and correspondences, so the posterior distribution is
given as

p(y1:t|u1:t, z1:t, c1:t) = p(x1:t|u1:t, z1:t, c1:t)

N∏
i=1

p(mi|u1:t, z1:t, c1:t)

This factorisation is known as Rao-Blackwellisation, and thus the particle filter as a
Rao-Blackwellised particle filter
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FastSLAM with Known Correspondences

Motion update of the particle’s pose

Initialisation of a new feature’s position

Position update of an existing feature

Weight update based on the measurement / prediction discrepancy

Unobserved features are not updated

Particle resampling
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FastSLAM with Unknown Correspondences
As in EKF SLAM, if the correspondences are not given, each observed feature is either matched to the
known features or a new feature is added; this operation needs to be performed for every particle!

Similarity

calculation

Similarity maximisation

to existing features or

registering a new feature
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Problems with FastSLAM

▶ A basic implementation of the algorithm is inefficient and has time complexity of O(MN) — this
is because the procedure performs inefficient updates on all features — a more efficient
implementation can make use of shared feature memory structures that reduce the time complexity

▶ FastSLAM discards features that are considered spurious, but this can introduce difficulties with
loop closure if particles with (past) path segments that are responsible for those measurements are
discarded in the resampling process

▶ In general — and just as in the localisation case — a diverse set of particles should be
maintained to prevent too early convergence on an incorrect map estimate
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FastSLAM with Occupancy Grids

▶ The FastSLAM algorithm can be used with occupancy grid maps as well — unlike EKF SLAM,
which would not be able to deal with the computational complexity of large grids

▶ In this case, instead of maintaining map features in the representation, each particle maintains
an occupancy grid map

▶ The map of each particle is then updated after performing a motion command and collecting an
associated measurement

▶ The weight of each particle is calculated based on the pose and measurement likelihood in the
associated map

▶ The resulting algorithm is referred to as grid-based FastSLAM

▶ The popular gmapping package in ROS is an implementation of this algorithm
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Visual SLAM
▶ While 2D occupancy grids are commonly used in robot applications, visual maps are

conceptually desirable and interesting for robotics — visual data is a considerably richer
information source than range sensors

C. Campos et al., “ORB-SLAM3: An Accurate
Open-Source Library for Visual, Visual–Inertial, and

Multimap SLAM,” in IEEE Transactions on Robotics, vol.
37, no. 6, pp. 1874–1890, Dec. 2021.

▶ Visual SLAM is a family of techniques that use visual data
(RGB or RGB-D images); many visual SLAM approaches exist
in the literature1,2

▶ Visual information is often combined with inertial measurements
for improved motion tracking; this is referred to as
visual-inertial SLAM

▶ A large variety of feature descriptors are applied in visual SLAM,
e.g. SIFT, SURF, or ORB; loop closure can be performed using
place recognition, which can be done using a
bag-of-visual-words

▶ Note that EKF SLAM and FastSLAM are conceptually agnostic to the map / feature
representation; thus, they can also be used in visual SLAM

[1] I. A. Kazerouni et al., “A survey of state-of-the-art on visual SLAM,” Expert Systems with Applications, vol. 205, Nov. 2022.
[2] A. Macario Barros A et al., “A Comprehensive Survey of Visual SLAM Algorithms,” Robotics, vol. 11, no. 1, Feb. 2022.
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Summary
▶ Mapping is a process of creating an environment representation from sensor data, but the mapping

process depends on accurate ground-truth localisation

▶ Occupancy grid mapping is a Bayesian filtering procedure that acquires an occupancy grid
representation from range sensor measurements

▶ SLAM is a process of creating a map by also estimating a robot’s pose; the problem is concerned
with finding an estimate of the distribution of maps and a robot’s pose (online SLAM) or a robot’s
path (full SLAM)

▶ There is a large variety of SLAM algorithms; mirroring our localisation discussion, we concretely
looked at EKF SLAM, which is an algorithm based on extended Kalman filters, and FastSLAM,
which uses a Rao-Blackwellised particle filter

▶ Visual SLAM uses data from cameras (exclusively or combined with other data sources) to create a
visual 3D map

▶ Solving the feature correspondence problem is an essential component of all SLAM algorithms
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