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Mapping Preliminaries
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What is Mapping?

» As discussed in our previous lectures, a robot
needs an environment representation so that it
can act autonomously in an environment

» A representation that enables autonomous
navigation is referred to as a map — the process
of creating a map is called mapping

» Particularly for planar navigation, occupancy
grids are quite commonly used
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Challenges of Mapping

» The primary problem with mapping is that creating a map requires the robot’s location to be
given at all times, but determining the location needs a map to be provided

» Mapping and localisation is thus a chicken-and-egg problem
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» The primary problem with mapping is that creating a map requires the robot’s location to be
given at all times, but determining the location needs a map to be provided

» Mapping and localisation is thus a chicken-and-egg problem

» All mapping procedures involve processing perceptual features and representing those in a map, but
the quality and uniqueness of mapping depends on the types of features that are used for
mapping

» Think about how people map environments — we need distinguishing features (e.g. flashy billboards)
rather than unremarkable features (e.g. trees that all look the same)
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given at all times, but determining the location needs a map to be provided

» Mapping and localisation is thus a chicken-and-egg problem

» All mapping procedures involve processing perceptual features and representing those in a map, but
the quality and uniqueness of mapping depends on the types of features that are used for
mapping

» Think about how people map environments — we need distinguishing features (e.g. flashy billboards)
rather than unremarkable features (e.g. trees that all look the same)

» A robot may also have multiple sensors and thus create multiple maps; in this case, there is a need
to combine maps that are based on multiple sensor modalities
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Mapping and Feature Correspondences

» Except in cases where perceptual features have unique IDs
(e.g. unique QR codes), a correspondence problem
needs to be resolved during mapping

Examples of visual feature correspondences. Taken from E.
Delponte et al., “SVD-matching using SIFT features,” Graphical
models, vol. 68, no. 5-6, pp. 415-431, 2006.
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Mapping and Feature Correspondences

» Except in cases where perceptual features have unique IDs
(e.g. unique QR codes), a correspondence problem
needs to be resolved during mapping

» The correspondence problem is concerned with the
identification of feature identities: an observed feature
should either be matched with known features or be
identified as a new feature

Examples of visual feature correspondences. Taken from E.
Delponte et al., “SVD-matching using SIFT features,” Graphical
models, vol. 68, no. 5-6, pp. 415-431, 2006.
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Mapping and Feature Correspondences

» Except in cases where perceptual features have unique IDs
(e.g. unique QR codes), a correspondence problem
needs to be resolved during mapping

» The correspondence problem is concerned with the
identification of feature identities: an observed feature
should either be matched with known features or be
identified as a new feature

» This is a challenging optimisation problem — matching
is typically performed by minimising a distance metric

Examples of visual feature correspondences. Taken from E. H H
Delponte et al., “SVD-matching using SIFT features,” Graphical to eX'Stlng features
models, vol. 68, no. 56, pp. 415431, 2006, » The main challenge stems from perceptual ambiguities

— distinct features may look indistinguishable from
different views

» Computational cost is also a challenge — the
optimisation problem needs to be resolved continuously, as
a robot moves around and collects new measurements
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Mapping and Environment Representations

&
172K Points,_
3D point cloud map created from RGB-D measurements. Taken from E. Sandstrom, Erik et

al., “Point-SLAM: Dense Neural Point Cloud-based SLAM," in Proc. IEEE/CVF Int. Conf.
Computer Vision, 2023.

» The exact manner in which mapping is performed strongly depends on the representation that is
used to represent the map

Occupancy grid created using a 2D laser

» Mapping is a very active research field, with new approaches being regularly proposed

» There are, however, various commonalities between different mapping techniques, which we
attempt to discuss today

» We will start with the simplest type of mapping: 2D occupancy grid mapping
O @ e
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Occupancy Grid Mapping
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Reminder: 2D Occupancy Grid e

» A 2D occupancy grid is a two-dimensional discrete map tha
represents an environment by a set of grid cells, each of
which has an occupancy probability

e » We can define an occupancy grid to have the form
' MO = (w, h,r,0,,0,,OC), where:
» 1 is the grid cell resolution (e.g. in meters)

i | » w and h are the map’s width and height, respectively

e . , ..
‘iU » o, and o, represent the coordinates of the map’s origin
() point (in continuous coordinates)

55 » OC € R"*¥ is an occupancy probability matrix, namely

0Ci; €[0,1],1<i<h1<j<w

» 2D occupancy grid can be acquired from 2D measurements
and are very commonly used in (indoor) robotics
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ROBOTICS

Occupancy Grid Mapping Formalisation

» The overall objective of the occupancy grid mapping process is to approximate the posterior
occupancy distribution given the robot’s movements and measurements:

p(OC|xo:4, Uo:t, Z1:¢)
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ROBOTICS

Occupancy Grid Mapping Formalisation

» The overall objective of the occupancy grid mapping process is to approximate the posterior
occupancy distribution given the robot’s movements and measurements:

p(OC|xo:4, Uo:t, Z1:¢)

» A common assumption made in occupancy grid mapping is that the occupancy probabilities are
independent of each other, in which case the map probability is written as

h w
p(OO|m0:t7 UQ:t, zl:t) = H Hp(oci,j|m0:ta UQ:t, Zl:t)

i=1j=1
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Occupancy Grid Mapping Formalisation

ROBOTICS

» The overall objective of the occupancy grid mapping process is to approximate the posterior
occupancy distribution given the robot’s movements and measurements:

p(OC|xo:4, Uo:t, Z1:¢)

» A common assumption made in occupancy grid mapping is that the occupancy probabilities are
independent of each other, in which case the map probability is written as

h w
p(OO|m0:ta UQ:t, zl:t) = H Hp(oci,j|m0:ta UQ:t, Zl:t)

i=1j=1

» Due to potential numerical instabilities, occupancy grids are often represented through the log
odds instead of through the occupancy probabilities directly:
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ROBOTICS

Occupancy Grid Mapping Algorithm

1: function OccuprancyGrRIDMaPPING(LOC, @, z¢)

2 for i +— 1 to h do

3: for j < 1 to w do

4: if LOC; ; in the field of z; then

5: LOCi,5 + LOCi,j5 + InverseSensorModel((xLocm. ,yLOCi,j),fﬂt,Zt) — o
6 return LOC

» Given the current robot's state x; and a measurement z;, the idea behind occupancy grid mapping
is to update the occupancy probabilities of only those cells that fall within the sensor’s
field of view
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3: for j < 1 to w do

4: if LOC; ; in the field of z; then

5: LOCi,5 + LOCi,j5 + InverseSensorModel((xLocm. ,yLoci,j),mt,Zt) — o
6 return LOC

» Given the current robot's state x; and a measurement z;, the idea behind occupancy grid mapping
is to update the occupancy probabilities of only those cells that fall within the sensor’s
field of view

» Measurements are noisy! Because of this, the update of those cells uses an inverse sensor model
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Occupancy Grid Mapping Algorithm

1: function OccuprancyGrRIDMaPPING(LOC, @, z¢)

2 for i +— 1 to h do

3: for j < 1 to w do

4: if LOC; ; in the field of z; then

5: LOCi,5 + LOCi,j5 + InverseSensorModel((xLocm. ,yLoci,j),mt,Zt) — o
6 return LOC

» Given the current robot's state x; and a measurement z;, the idea behind occupancy grid mapping
is to update the occupancy probabilities of only those cells that fall within the sensor’s
field of view

» Measurements are noisy! Because of this, the update of those cells uses an inverse sensor model

» The algorithm updates the occupancies continuously, based on every new evidence —
dynamic obstacles that disappear quickly will thus not affect the mapping process significantly
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Inverse Sensor Model

1: function InvERSESENSORMODEL((%4 5,%4,5), (Tt,yt,0t), 2t)
20 e (i —e)? 4 (Wi — )2
3 ¢ — atan2(yi,j — Yt, Tij — a:t) — 0
4 k + argmin|¢ — 0]
J
5: if r > min(zmax, zt, + @/2) or |¢ — 0z, | > 3/2 then
6: return [g
7 if zf < Zmax and |r — zf| < a/2 then
8 return locc
9: if » < z¢, then
10: return g

> The algorithm above is an inverse sensor model for a range sensor (e.g. a lidar), which returns
the occupancy log odds:
—In p(OCi;|my, 2t)

l;
7 1 —p(OC; jlxt, zt)
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20 e (i —e)? 4 (Wi — )2
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4 k + argmin|¢ — 0]
J
5: if r > min(zmax, zt, + @/2) or |¢ — 0z, | > 3/2 then
6: return [g
7 if zf < Zmax and |r — zf| < a/2 then
8 return locc
9: if » < z¢, then
10: return g

> The algorithm above is an inverse sensor model for a range sensor (e.g. a lidar), which returns
the occupancy log odds:
—In p(OCi;|my, 2t)

l;
7 1 —p(OC; jlxt, zt)

» The above model is specified for an angular range [ and a distance tolerance «
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Inverse Sensor Model

function InvERSESENSORMODEL((Z4,5,Yi,5), (@t, Ye,0t), 2¢)
r (@i —x)? + (Yi; — yt)?
¢ atan?(yi,j — Yt, Ti,j — xy) — Oy
k < argmin|¢ — 6|

1:
2
3
4
J
5: if r > min(zmax, zt, + @/2) or |¢ — 0z, | > 3/2 then
6: return [y
7 if zf < Zmax and |r — zf| < a/2 then
8 return locc
9 if » < z¢, then
0

10: return lfee
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> The algorithm above is an inverse sensor model for a range sensor (e.g. a lidar), which returns

the occupancy log odds:
—In p(OCi;|my, 2t)

l;
7 1 —p(OC; jlxt, zt)

» The above model is specified for an angular range [ and a distance tolerance «

» In general, such an inverse sensor model can be learned
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Occupancy Grid Mapping lllustration

Real environment Mapping: ¢ = 1
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Occupancy Grid Mapping lllustration

Real environment Mapping: t = 2
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Occupancy Grid Mapping lllustration

Real environment Mapping: t = 3
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Occupancy Grid Mapping lllustration: Dynamic Obstacle

Real environment Mapping: ¢ = 1
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Occupancy Grid Mapping lllustration: Dynamic Obstacle

Real environment Mapping: t = 3
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Occupancy Grid Mapping Challenges

» The main problem of this mapping technique is that the
poses are supposed to be known — perfect, noise-free
motion is thus assumed

» In reality, robot motions are noisy and will accumulate over
time if not corrected — this can lead a map to drift away
» The occupancy grid mapping algorithm does not perform loop
closure — recognising that a landmark has previously been
seen and correcting the estimate accordingly

» A more general technique is thus needed — one that enables a
robot to recover from the accumulation of motion errors

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Without loop closure and correction for a robot's noisy
motion, an inaccurate map will be created

sttt for Al ond
’.. Autonomous Systems Simultaneous Localisation and Mapping (SLAM) 15 /33



Simultaneous Localisation and Mapping (SLAM)
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What is SLAM?

» SLAM is a technique based on which a robot can create an environment map while
determining the pose at the same time

» SLAM thus aims to resolve the main problem of mapping techniques that assume perfect robot motion
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What is SLAM?

» SLAM is a technique based on which a robot can create an environment map while
determining the pose at the same time

» SLAM thus aims to resolve the main problem of mapping techniques that assume perfect robot motion

» The ultimate objective of SLAM is to create an accurate environment map that can
subsequently be used for localisation
» Thus, SLAM is a mapping technique at its core — the output of the procedure is the map, while the
robot's pose estimates are typically discarded in the end
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ROBOTICS

SLAM Formalisation

» The obvious way of defining SLAM is that of computing the distribution of the current pose
along with the map, given all motion commands and measurements — referred to as the online
SLAM problem:

p(wtv M|u0:ta zl:t)
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SLAM Formalisation

ROBOTICS

fProbabitistic

» The obvious way of defining SLAM is that of computing the distribution of the current pose

along with the map, given all motion commands and measurements — referred to as the online
SLAM problem:

p(wtv M|u0:ta zl:t)

» In general, we may also be interested in the distribution of the full path along with the map —
this is referred to as the full SLAM problem:

p(wO:h M|u0:t7 zl:t)
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ROBOTICS

SLAM Formalisation S

» The obvious way of defining SLAM is that of computing the distribution of the current pose
along with the map, given all motion commands and measurements — referred to as the online
SLAM problem:

p(mtv M|u0:ta zl:t)

» In general, we may also be interested in the distribution of the full path along with the map —
this is referred to as the full SLAM problem:

p(mO:t7 M|u0:t7 zl:t)

» SLAM is typically performed by finding correspondences between landmarks; considering
correspondences explicitly, the SLAM problem can be defined as follows:

» Online SLAM Problem with correspondences: p(x:, c:, M|uo:t, z1:¢)
» Full SLAM Problem with correspondences: p(x1:¢, c1:t, M|wo:t, 21:¢)
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How is SLAM Performed?

» There is no single way of performing SLAM, but, just like in the case of localisation, many SLAM
techniques are based on Bayesian filtering
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> A typical SLAM algorithm performs the following steps continuously:
1. A motion update is performed based on a robot's motion command
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How is SLAM Performed?

» There is no single way of performing SLAM, but, just like in the case of localisation, many SLAM

techniques are based on Bayesian filtering

> A typical SLAM algorithm performs the following steps continuously:
1. A motion update is performed based on a robot's motion command
2. Sensor measurements are collected, and feature extraction is performed

3. Feature predictions are made based on the robot’s hypothesised location
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How is SLAM Performed?

» There is no single way of performing SLAM, but, just like in the case of localisation, many SLAM

techniques are based on Bayesian filtering

> A typical SLAM algorithm performs the following steps continuously:

1. A motion update is performed based on a robot's motion command

2. Sensor measurements are collected, and feature extraction is performed
3. Feature predictions are made based on the robot’s hypothesised location
4

. A solution to the correspondence problem is found
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techniques are based on Bayesian filtering

> A typical SLAM algorithm performs the following steps continuously:

1. A motion update is performed based on a robot's motion command

2. Sensor measurements are collected, and feature extraction is performed

3. Feature predictions are made based on the robot’s hypothesised location
4. A solution to the correspondence problem is found
5

. The existing features are updated as necessary, or a new feature is recorded in the map
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How is SLAM Performed?

» There is no single way of performing SLAM, but, just like in the case of localisation, many SLAM
techniques are based on Bayesian filtering

> A typical SLAM algorithm performs the following steps continuously:

1. A motion update is performed based on a robot's motion command

2. Sensor measurements are collected, and feature extraction is performed

3. Feature predictions are made based on the robot’s hypothesised location
4. A solution to the correspondence problem is found
5

. The existing features are updated as necessary, or a new feature is recorded in the map

» SLAM algorithms differ in the way in which they perform the above steps
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SLAM Challenges

» Unlike localisation, SLAM is a high-dimensional problem — the map features and feature
correspondences need to be considered in addition to the pose
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SLAM Challenges

» Unlike localisation, SLAM is a high-dimensional problem — the map features and feature
correspondences need to be considered in addition to the pose

» SLAM also requires a solution to the correspondence problem, which is challenging in general —
not just in the context of SLAM
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SLAM Challenges

» Unlike localisation, SLAM is a high-dimensional problem — the map features and feature
correspondences need to be considered in addition to the pose

» SLAM also requires a solution to the correspondence problem, which is challenging in general —
not just in the context of SLAM

» The incorporation of new information into existing maps is also generally difficult — dynamic
mapping may lead to deterioration of known maps
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SLAM Algorithms
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SLAM Techniques

» On the following slides, we will look at two major SLAM techniques:

A SLAM algorithm that uses an extended An algorithm using a Rao-Blackwellised particle
Kalman filter filter (combining a particle filter with EKFs)

» We will also take a very brief look at visual SLAM — the currently predominant SLAM paradigm
using visual information
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ROBOTICS

EKF SLAM -

» In EKF SLAM, the state representation combines the robot’s pose with the positions and
identities of the features in the map; considering N features m;,1 < ¢ < N with positions
(mg,,m;,) and identities 1; , the state in EKF SLAM is represented as

T T
Yy = (a:t m) = (ac y 6 mi, my, mi, .. myn, mp, mNS)
> EKF SLAM can be performed relatively easily if the feature identities are known (e.g. if features
have unique identities that can be easily identified)

» In the more general case of unknown feature identities, the algorithm needs to solve the
correspondence problem
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EKF SLAM with Known Correspondences

0BOTICS
1 ithm EKF_SLAM known = soed:
170 0 00
010 0.0
z 001 0.0
a
— S il g0+ 2 sinise_y 0+ wit)
3 e= o HFT | Beospeoio— 5 cos(p o +widt)
Gt
00 Moy pt toos(umy o +wd)
4 0 0 —Ztsinpeyp+ 2sin(ue- o +widt) ) Fy
o
&
7
& i=ci
o iflandmark j never seen before
Ay B v} cos(6} +fire)
10 By By |+ [ sl +aco)
By st 0
1
12
13
14
i
100 000 0 0 0.0
010 0.0000 0.0
001 0.0000 0.0
15 Fay=| 000 0.0 100 0.0
000 0.0010 0.0
00000001 0.0
Vas
16
17
18
19
p
2 o=
2 Ee=%¢
bt retum i, Ee

O @ ‘o SI—
Bonn-Rhein-Sieg e Institute for Al and

University of Applied Sciences Information Technology Autonomous Systems

Simultaneous Localisation and Mapping (SLAM) 24 /33



ROBOTICS

EKF SLAM with Known Correspondences
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ROBOTICS

EKF SLAM with Known Correspondences

1: il EKF_SLAM_known_ = el
A
. ;( K )
g )
3 Brmpior +FF [ conpey0— 3 conus o +unt)
, 0 0 ttompu iy s ikt Motion update of the robot's pose

4 Go=t4FE [0 0 Heinpcip+ Leinuootwdt) | A

0 0 o
5 B¢ =G Ty Gf +FT ReFa
& @=(0 2 o

:
7 (f & )T do
;
} e
Bye B 4 con(6] +ine) e . ) L.

0 (5)-(5 )+ (e ) —‘ Initialisation of a new feature's position ‘
11: endif ks ‘
12
,3
14

A
;
)
5
.
:
it
:
2
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EKF SLAM with Known Correspondences

ROBOTICS
1 i EKF_SLAM_known_ p? L
1700 00
010 00
2 Fa=lo 01 9.0
cL

T e T I (i F AT

e B+ FT [ Scospuem o — £ cos(pon o +wilt)
o
o
o

I 4{ Motion update of the robot’s pose ‘
o *;f“"m-m*»j‘uﬂ“(h-x.a+~JkAt) ) Py

0

s LT RF,

T
« v )

a3
7 s:j = (rf & 8)7 do
s
o T TindvarcJ mever sace Bafore

. wg o )- (%)« (=) —{ Initialisation of a new feature's position \
= [e(3)-(0) —

s | e ( £ 4{ Measurement prediction

14 = n(nn’!\éy;ﬁ:)*ﬁ,,

-0
0
0
0

—eceocd

Vs Jas, u)
5 Fay
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EKF SLAM with Known Correspondences

1 ithm EKE_SLAM _known =, 00

in(pre—1,0 +wr At}

. e Ly
4 e 4{ Motion update of the robot’s pose ‘
PR S PN

‘ wg i )-(5) (=) —‘ Initialisation of a new feature's position ‘
12 e [N ivx e,
: :_S(!:W%w‘)) 4{ Measurement prediction ‘

010 0.0000 0.0
001 0.0000 0.0
I Fay=| 000 0.0 100 0.0
000 0.0010 0.0
000 Q000 1 0.0
z M t updat
s proey
e easurement update
16: Hi=1 5, 6. —a =8, 46 0 | Fey
0 [ L
17: ¢t =S HT (H{ S0 HT 4 Q)"
18 o= e+ Ki(st - 5}
19 Se=( - K{Hf) S0
p wAE
21 Be= i
2 Ee=%
2 retum pe, B¢
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EKF SLAM with Unknown Correspondences

ROBOTICS

In the unknown correspondence case, each observed feature is either matched to one of the
known features — for instance, using maximum likelihood estimation — or a new feature is a
all known features exceed a distance threshold

1: Algorithm EKF_SLAM(ue—1, Se_1, ug, 2. Neoy): Vi
ot (ue-1, et e, 26, Net - TR
2 Ny=Ney ke
100 0..0 100 0.0 000 0.0
3 Fe=|010 0.0 010 0.0 000 0..0
00100 001 0.0 000 0.0
14: Fep=
—gesinpeoye + 5 Sin(peo10 +wet) 000 00100 0.0
4 Jie=per+FL | fcospeye— 2 cos(pe-te +weldt) 000 00 010 0.0
weAt 000 0..0001 0---0
0 0 —fcospyo+ 2 cos(pero+welt) oy [ VB —VBSy O VBidka V3iey O
5 Ge=I+FT | 0 0 —Zsing,;q+2sin(uep+wdt) | F 15 Hf = ey Oz -1 Oy Gke O ) Frp
5 By 0 0 0 0 0 1
00 0
2 . _HKS, [HMT
6 B =G GF+FF R F, 16: Wy = Hf T [H]" + Q.
6 0 0 17: mr = (2 — 2T Wt (a4 — 35)
% Qt:( 0 oy ()) 18  endfor
00 o 19 wg4i=a
8 forall observed features =f = (r} ¢} s$)T do o

(i) = argmin =,
k
Axerte it cos(¢} + i) ' o
9 ( i ) - (ﬁ” )“;( sin(@} + i) 2 Ny = max{Ne,j()}
;

0 2 Ki=% HOT

ANet1,e 8

10:  fork =1toNi+1do 22 e = fie + Ki (s — 39)

- ( o ) - ( Fag S Ree ) u B (I-KiHE,
Oky Fiky — ity . i
12 ax = 8 6k 2;. end »f
pe = fit
2 T,=%
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EKF SLAM with Unknown Correspondences

ROBOTICS

In the unknown correspondence case, each observed feature is either matched to one of the:
known features — for instance, using maximum likelihood estimation — or a new feature is a
all known features exceed a distance threshold

1: Algorithm EKF_SLAM(u¢—1, Ze—1, ue, 2. Ne_yk VK
5' " i1, Doty uty 20, Ne 13 = atan2(duy, xz) — fite
2 Ne=Nes Fiks
100 0.0 100 0.0 000 0.0
3 Fe=|010 0.0 010 00000 0.0
00 1 0.0 001 0.0 000 0.0
. — 14 Fep=
—Lesingi_y o+ S sin(u_10 +welt) 000 00 100 0.0
& fe=peor+FL | fcospere— 3 cos(ueote +wedt) U Bl 8 LR el
weAt 000 0.0 001 0.0
00— cospor ot 2 cos(pims o +wet) o1 [ TVESer ~Vabey O Vb iy 0
5 Ge=I+FT | 0 0 —Zsing,jq+2sin(uep+wdt) | Fr 15 HE =4 ky —dkz  —1 Gy Gkx O | Frp
i e o 0 i 0o 0 01
. . —HF T, (HAT
6 5 =G5, GF+FT R F, i Y= HE T (BT + Qe
0 17: me= (2} — 3T U (s - 3F)
7 @=[0 o5 0 18 endfor
80 e . . . . 19 aN4p1=a
8 forall observed features =f = (ri ¢} s)T do Slml|al’lty calculation | 4 )= wrglive
[]
ANp1e it cos(¢f +ice) : o
9 ( ANy ) = (ﬁzy )+:-;( sin(¢f + firo) 21 Ne=max{Ne,j(i)}
e & 0 2 Ki=% [HOv
100 fork=1toNe+ldo B o=t K (= 59
1 ‘sk:(“k-*):(t‘k-x’t"-’) 2 S-(-KiHO)E,
Oky Fiky — ity ) .
5 endfo
12 =T endtor
260 py =it
2 T,=%
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EKF SLAM with Unknown Correspondences
In the unknown correspondence case, each observed feature is either matched to one of th :Ij:
known features — for instance, using maximum likelihood estimation — or a new feature is a
all known features exceed a distance threshold

1: Algorithm EKF_SLAM(u;_y, Se_y. ug, 2. Ne—y): VK
orith ¢ 13 i = atan2(Eny, ) — e
2 Ne=Ney Pk
100 0...0 100 0...0 0OO0 0...0
3 Fr=|010 0.--0 010 0...0 00O0 0...0
001 0...0 001 0..0 000 0..-0
14 Frp=
—esinpeyo+ 2 sin(ueote +wedt) 000 00100 0.0
4 fe=per+FF | freospene— g cos(uoto +wAt) 00F0 00 0L 00
weAt 000 0..0 001 0...0
0 0 —fcospeoto+ i cos(pes o +wrAt) oo [ TVAer ~Vibhy O Vaiber Videy 0
S Ge=I+FT | 0 0 —Zsing, o+ Ssinfp+wdl) | Fr 15 Himg| % —free -1 -0y e 0 |Fop
00 g . 0 0 0 0 0 1
. ’ o TIATT
6 B =G GF+FF R F, 1= Y= HE T (BT + Qe
o 0 17: me= (2} — 3T U (s - 3F)
% Qo] 10 oy, 0 18  endfor
80 e « s . . 19 [[aN1=a
8 forall observed features =f = (ri ¢} s)T do Slml|al’lty calculation | 4 )= wrglive
[]
N fits cos(¢ +fite) . -
& ( i ) B (}.M )“;( sin@ + fiee) 21 | Ne = max{N.j(i)}
fiNettys s 0 2 Ki=% [HOv k/\
100 fork=1toNe+ldo B o=t K (= 59
L e 2 S-U-KEHO)E Similarity maximisation
ey Fhy — Pty 25 dfo
5. endftor 5 L
LA i to existing features or
2 pe=fr
Z: =% adding a new feature
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ROBOTICS

Problems with EKF SLAM

» Just as in the localisation case, only a single hypothesis is pursued by EKF SLAM — additional
recovery procedures need to be implemented to recover from a localisation loss

> With a large number of features, EKF SLAM needs to work with large matrices (in the order of the
number of features N) — the algorithm can thus be memory and computationally expensive

» The algorithm does not consider features that have not been observed, but which should
have been under the pose hypothesis
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FastSLAM

» FastSLAM is a particle filter-based SLAM algorithm that solves the full SLAM proble j

» As in EKF SLAM, the state representation combines the robot’s path and the states of
features, such that each feature is represented by an extended Kalman filter

» Thus, each feature m;,1 < i < N has an associated Gaussian distribution p;, 3,
» Each particle p/,1 < j < M in FastSLAM is represented as follows:

pj = [(mlvyhal)7"'7(mt7yt79t)7(”1721)7"'7(u’N»EN)’wj:|

» FastSLAM is based on an insight that poses and features are conditionally independent
given the control updates, measurements, and correspondences, so the posterior distribution is

given as N

P(Yrt|ur, 21, €10) = P(T1e[Ure, 21, C1t) Hp(mi|u1:t,z1:tyclzt)
i=1
This factorisation is known as Rao-Blackwellisation, and thus the particle filter as a
Rao-Blackwellised particle filter
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ROBOTICS

FastSLAM with Known Correspondences

1 Algorithm FastSLAM 1.0_known_correspondence(z, ci,t, Y 1):

2 fork=1toMdo // loop over all partices
3 retrieve <zL’i‘, <u‘fl,. <u‘,¢‘,,.,)_‘\h ,>> fromY,
4 =M ~ plz | 2| // sample pose
5 i=a // observed feature
& if feature j never seen before
7 ,J*‘ = fr'( L) // initialize mean
8 (2 ‘*’) // aleulate Jacobian
o // initialize covariance
10: // default importance weight
1
12 // measurement prediction
13: // calculate Jacobian
14 // measurement covariance
15: // calculate Kalman gain
16: // update mean
17: // update covariance
18:
)} // importance factor
19:
20: // unobserved features
21 // leave unchanged
2:
23:
24:
2: // initialize new particle set
2 do M times // resample M particles
27: draw random k with probability o w'* // resample
2 add <T,“ <m‘, :E*}) .<,J\“,‘.:L5‘>> oY
29:  endfor
30: return’Y,
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ROBOTICS

FastSLAM with Known Correspondences

1 Algorithm FastSLAM 1.0_known_correspondence(z, ci,t, Y 1):

2 fork=1toM do // loop over all particles
3 retiove (a1, (4, (S8, from v,

 samplepose Motion update of the particle’s pose

5 i=a // observed feature
& if feature j never seen before
7 ,J*‘ = fr'( L) // initialize mean
8 (2 ‘*’) // aleulate Jacobian
o // initialize covariance
10: // default importance weight
1
12 // measurement prediction
13: // calculate Jacobian
14 // measurement covariance
15: // calculate Kalman gain
16: // update mean
17: // update covariance
18:
)} // importance factor
19:
20: // unobserved features
21 // leave unchanged
2:
23:
24:
2: // initialize new particle set
2 do M times // resample M particles
27: draw random k with probability o w'* // resample
2 add <T,“ <m‘, :E*}) .<,J\“,‘.:L5‘>> oY
29:  endfor
30: return’Y,
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ROBOTICS

FastSLAM with Known Correspondences

1 Algorithm FastSLAM 1.0_known_correspondence(z, ci,t, Y 1):

2 fork=1toM do // loop over all particles
3 retrieve (sl (st S ) oo (il BB L)) from Vi

¢ [Pttt / samplepese |—{ Motion update of the particle’s pose ‘

i=e // observed feature

if feature j never seen before

5

:‘ W= A (z0,2l) 7/ initiali

. = TG initialize mean_ L. . .

: gﬁ!:,u!*']c”z%'i)rr'v 1/ aleielosion 4{ Initialisation of a new feature's position ‘

default importance weight

1
12 // measurement prediction
13: // calculate Jacobian
14 // measurement covariance
15: // calculate Kalman gain
16: // update mean
17: // update covariance
18:
19: endif
20: forall other features j' # j do // unobserved features
21 ol =pld // leave unchanged
2 SO
e = g
P endfor
24 endfor
25 W // initialize new particle set
2 do M times // resample M particles
27: draw random k with probability o w'* // resample
2 add <T,“‘ <,A“,.z’ﬁ!),. .<,J¢‘.:’5‘>>mv,
29:  endfor
30: return’Y,
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ROBOTICS

FastSLAM with Known Correspondences

1 Algorithm FastSLAM 1.0_known_correspondence(z, ci,t, Y 1):

2 fork=1toMdo // loop over all particles
R T Ny
. R

e [ Hemeitom J samplepose I—{ Motion update of the particle’s pose ‘
5: j=a // observed feature
6 if feature j never seen before
7 W = h (e, 2l) /7 initialize mean
s H=H(M M // calculate Jacobi . H ' e
: el W Y i e Initialisation of a new feature's position
10: A default importance weight
1
12 // measurement prediction
13: // alculate Jacobian
14 // covaria ‘ +1 N N
= At | Position update of an existing feature ‘
16 // update mean
17: // update covariance
18:

! (2 — 2n) }// importance factor
19: endif
2 forall other features j' # j do // unobserved features
> Wl =l // leave unchanged
2: SO

=2,

23: endfor
24: endfor
B Y= /1 initialize new particle set
2 doM times // resample M particles
27: draw random k with probability o w'* // resample
2 add<r,‘“ <,A“,.z’ﬁ!),. .<,J¢‘.:’5‘>>mv,
2: endfor
30: returnY;
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FastSLAM with Known Correspondences

ROBOTICS

1 Algorithm FastSLAM 1.0_known_correspondence(z, ci,t, Y 1):

2 fork:nogldo( < //lDDpaver;l;panides

3 retrieve (2!, (pl*l_, 2 (28 )Y fromy,

e [ Homeiton /. sampl pose I—{ Motion update of the particle’s pose ‘

5: i=e // observed feature

:: lile‘a?me: ne(vers;e‘;;beiom e

. eI T

s el W faiiie 4{ Initialisation of a new feature's position ‘
10: N =po default importance weight

11:

12 // measurement prediction

: e v -~

= Homteiiise i | Position update of an existing feature

16: // update mean

17: // update covariance

= s —{ Weight update based on the measurement / prediction discrepancy
19: endif

// unobserved features
// leave unchanged

// initialize new particle set

tim // resample M particles
27: draw random k with probability o« w!*! // resample

2 add< i <u‘, :E*!) § .<M“,‘.“’”>>mv,

29:  endfor

30: return’Y,
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FastSLAM with Known Correspondences

ROBOTICS

1 Algorithm FastSLAM 1.0_known_correspondence(z, ci,t, Y 1):

2 fork=1to <w do < // loop aver;l>l particles

3 retrieve (2!, (pl*l_, 2 20 )) fomY,

e [ Hemeitom /. sampl pose I—{ Motion update of the particle’s pose ‘

5: j=e // observed feature

& if feature j never- soon before

7 = *'k(:,..p) //Imh'al[mmennb . N X .
s el W faiiie 4{ Initialisation of a new feature's position ‘
10: default importance weight

> F—

13 // calculate Jacobian

- % e Position update of an existing feature
15 // calculate Kalman gain ‘ P g

16: // update mean

17: // update covariance

= s —{ Weight update based on the measurement / prediction discrepancy
19:

20: unobserved features

§; alesss 4{ Unobserved features are not updated ‘
n

% Y= // initialize new particle set

2 doM times // resample M particles

27: draw random k with probability o w'* // resample

2 add<r,‘“ <,A“,.z’ﬁ!),. .<,J¢‘.:’5‘>>mv,

2: endfor

30: returnY;
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FastSLAM with Known Correspondences

ROBOTICS

1 Algorithm FastSLAM 1.0_known_correspondence(z, ci,t, Y 1):

2 fork=1toM do // loop over all particles

3 retriove (2, (ut_ =, ) oo (28, )) from Yy

T / samplepose I—{ Motion update of the particle’s pose ‘

5 j=e // observed feature

& if feature j never seen before

7 = h’[' (]:,..r?"") 77 initialize mean

) el W Y i e Initialisation of a new feature's position ‘
10: wi = py default importance weight

// measurement prediction

|

13: // alculate Jacobian

. Yot Position update of an existing feature ‘

16 // update mean

17: 0 =(-K s // update covariance

e Rl e —{ Weight update based on the measurement / prediction discrepancy
19: endif

20: Torall =7 Z7do nobserved features

2 i /e merae 4{ Unobserved features are not updated ‘
e

5 |v=0 // initialize new particle set

2: | do M times // resample M particles K N

27: draw random k with probability o w'* // resample Part|cle resam pl | ng

2 add <T,“‘ <,A“,.z’ﬁ!),. .<M\“,‘.:Q§‘>> oY

29: endfor

30: retunY,
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FastSLAM with Unknown Correspondences
As in EKF SLAM, if the correspondences are not given, each observed feature is either matched f:
known features or a new feature is added; this operation needs to be performed for every partid

1: Algorithm FastSLAM 1.0(z., us, Yi 1) 25; else // all other features
6: NoPC) ;
2 fork=1toMdo // loop over all particles 2 Fia 1 ey o et
27: b // copy old covariance
L M g M 't = it )
3 mmeve<:, N <,A,, o |““>. . Fer? .
28: ifpl]_, outside perceptual
<,Am S >> v range of z!* then  // should feature have been seen?
£t Nt N, e ?
% 29: =i // no, do not change
& 2~ plae | 2y, ) // sample new pose 30: else
5 forj=1to N, do // measurement likelihoods 31 =M., 1 // yes, decrement counter
6 5= n(,.], o 11”) // measurement prediction 32: ifilf]_; < 0then
7: Hj = k' ,4 i) // calculate Jacobian 33: discard feature j // discard dubious features
8 Qi= ‘"‘1 . Hf +Qu //mea,uumemmananw 34: endif
9 mq T exp { 35: endif
QM z— :,)} // likelihood of correspondence 36: endif
10: endfor 37: endfor
11 =P // importance factor, new feature . sl <,} N --</1‘“.~ R >> 10Yaun
2 o = . el ) e il )
12 w = max wy // max likelihood correspondence o
13 argmax w, // index of ML feature & 4 e s e
14 NM = max{NM,, &} // new number of features in map
B fors =110 N¥ do // update Kalman filters 41:  doM times // resample M particles
A 3 o R a2 draw random index k
i e e o eanire with probability = w!* // resample
17: // initialize mean s e & " N
18: 1= (H;)QuH;" /7 initialize covar. & col <l‘ N (“‘ el > 33 ’<“ i S g e >> ok
19: // initialize counter 44:  enddo
is observs ? =
20: // is observed feature? . e
21: // calculate Kalman gain
22 // update mean
23 = ; \  // update covariance
24: // increment counter
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FastSLAM with Unknown Correspondences
As in EKF SLAM, if the correspondences are not given, each observed feature is either matched | t
known features or a new feature is added; this operation needs to be performed for every partic

oe

1: Algorithm FastSLAM 1.0z, us, Vi 1):

2 fork=1to M do

i M
3 muleve<:, N <,A‘,, »I¥

m g

// loop over all particles

el
B Yarenh

.L”‘l‘:’r‘>>numﬂ—1

Similarity

calculation

s 2} ~ plae | 2, ue) // sample new pose

5 forj=1to \'“‘ do // measurement likelihoods

6 25 = h(ul oo 2y // measurement prediction

7 Hy = K, =) // calculate Jacobian

8 Qi =H; 5 : H +Q // measurement covariance

9 mq, T exp {

QM z— :,)} // likelihood of

10: endfor

1 wy b, = PO // importance factor, new feature

12 w = max wy // max likelihood correspondence

13: rgma w; // index of ML feature

14 = max{N/¥,, &} // new number of features in map

15: NM do // update Kalman filters

16 1+ N, then // is new feature?

17: ) // initialize mean

18: H = (,J*‘ 1) s = (1;Y)TQuH;Y /7 initialize covar.

19: // initialize counter

20: // is observed feature?

21: // calculate Kalman gain

22 // update mean

23 D2y // update covariance

24 =it 41 // increment counter
Hochschule

Bonn-Rhein-Sieg
University of Applied Sciences
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else

=

]
range of z|*! then
e
else
K _ M
a1
ifilf]_; < 0then
discard feature j
endif
endif
endif
endfor
add (2
endfor
Yi=0
do M times

draw random index k
with probability o w'*

] ( L]

add (2,1
enddo

return Y,

Simultaneous Localisation and Mapping (SLAM)

-1
ifulf]_, outside perceptual

£ Probabilistic
ROBOTICS

// all other features
// copy old mean

// copy old covariance

// should feature have been seen?
// no, do not change

// yes, decrement counter

// discard dubious features

..</4:3. Rt ML >>mv,m

// construct new particle set

// resample M particles

// resample

.o )
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FastSLAM with Unknown Correspondences
As in EKF SLAM, if the correspondences are not given, each observed feature is either matched | t
known features or a new feature is added; this operation needs to be performed for every partic

1: Algorithm FastSLAM 1.0z, us, Vi 1):

2 fork=1to M do

! .
3 retrieve <:, N <,A‘,, 0

// loop over all particles

wi (k]
m ik

= H>>rrumY,—1

Similarity

calculation

Similarity maximisation
to existing features or

registering a new feature

s 2} ~ plae | 2, ue) // sample new pose

5 forj=1to \'“‘ do // measurement likelihoods

6 25 = h(ul oo 2y // measurement prediction

7 Hy = K, =) // calculate Jacobian

8 Qi= “h : H +Q //mt'davmnemcmananoe

9 mq, T exp {

QM z— :,)} // likelihood of

10: endfor

1 Wy b, = PO 7/ importance factor, new feature

12 w = max wy // max likelihood correspondence

13: rgma w; // index of ML feature

14 = max{N/, &} // new number of features in map

15: NM do // update Kalman filters

16 1+ N, then // is new feature?

17: ) // initialize mean

18: H = (,A*‘ 1) s = (1;Y)TQuH;Y /7 initialize covar.

19: // initialize counter

20: // is observed feature?

21: // calculate Kalman gain

22 // update mean

23 D2y // update covariance

24 =it 41 // increment counter
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£ Probabilistic
ROBOTICS

else // all other features
=4 // copy old mean
= iy // copy old covariance
ifplfl_, outside perceptual
rangeof ") then  // should feature have been seen?
M=, // no, do not change
else
=M., 1 // yes, decrement counter
ifilf]_; < 0then
discard feature j // discard dubious features
endif
endif
endif
endfor
add ( 2} "<",\A}* 2N o g ‘*‘ >>mv,m
endfor
Yi=9 // construct new particle set
do M times // resample M particles

draw random index k
with probability o w'*

] ( L]

add (2,1
enddo

return Y,

Simultaneous Localisation and Mapping (SLAM)

// resample
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Problems with FastSLAM

> A basic implementation of the algorithm is inefficient and has time complexity of O(M N) — this
is because the procedure performs inefficient updates on all features — a more efficient
implementation can make use of shared feature memory structures that reduce the time complexity
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Problems with FastSLAM

> A basic implementation of the algorithm is inefficient and has time complexity of O(M N) — this
is because the procedure performs inefficient updates on all features — a more efficient
implementation can make use of shared feature memory structures that reduce the time complexity

» FastSLAM discards features that are considered spurious, but this can introduce difficulties with

loop closure if particles with (past) path segments that are responsible for those measurements are
discarded in the resampling process

o ‘ Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Simultaneous Localisation and Mapping (SLAM) 30/33



Problems with FastSLAM

> A basic implementation of the algorithm is inefficient and has time complexity of O(M N) — this
is because the procedure performs inefficient updates on all features — a more efficient
implementation can make use of shared feature memory structures that reduce the time complexity

» FastSLAM discards features that are considered spurious, but this can introduce difficulties with
loop closure if particles with (past) path segments that are responsible for those measurements are
discarded in the resampling process

» In general — and just as in the localisation case — a diverse set of particles should be
maintained to prevent too early convergence on an incorrect map estimate

o ' Hochschule
Bonn-Rhein-Sieg Insttte for Alond
University of Applied Sciences tonomous Systems Simultaneous Localisation and Mapping (SLAM) 30 /33




FastSLAM with Occupancy Grids

» The FastSLAM algorithm can be used with occupancy grid maps as well — unlike EKF SLAM,
which would not be able to deal with the computational complexity of large grids

» In this case, instead of maintaining map features in the representation, each particle maintains
an occupancy grid map

» The map of each particle is then updated after performing a motion command and collecting an
associated measurement

» The weight of each particle is calculated based on the pose and measurement likelihood in the
associated map

» The resulting algorithm is referred to as grid-based FastSLAM
» The popular gmapping package in ROS is an implementation of this algorithm
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Visual SLAM

» While 2D occupancy grids are commonly used in robot applications, visual maps are
conceptually desirable and interesting for robotics — visual data is a considerably richer
information source than range sensors

macene
Extract |[initial Pose Estimation]
088 from last frame. wock | |New Keytrame}

» Visual SLAM is a family of techniques that use visual data

(RGB or RGB-D images); many visual SLAM approaches exist
in the literature!»2

0
integration

» Visual information is often combined with inertial measurements
for improved motion tracking; this is referred to as
visual-inertial SLAM

ONIddVW 1201

» A large variety of feature descriptors are applied in visual SLAM,
e NAP MERGING e.g. SIFT, SURF, or ORB; loop closure can be performed using
C. Campos et al., “ORB-SLAM3: An Accurate P . .
Open-Source Library for Visual, Visual-Inertial, and place recognltlon, which can be done using a
Multimap SLAM,” in IEEE Transactions on Robotics, vol. -
37, no. 6, pp. 1874-1890, Dec. 2021. bag—of—wsual—words

» Note that EKF SLAM and FastSLAM are conceptually agnostic to the map / feature
representation; thus, they can also be used in visual SLAM

[1] I. A. Kazerouni et al., “A survey of state-of-the-art on visual SLAM," Expert Systems with Applications, vol. 205, Nov. 2022.
[2] A. Macario Barros A et al., “A Comprehensive Survey of Visual SLAM Algorithms,” Robotics, vol. 11, no. 1, Feb. 2022.
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Summary

» Mapping is a process of creating an environment representation from sensor data, but the mapping
process depends on accurate ground-truth localisation

» Occupancy grid mapping is a Bayesian filtering procedure that acquires an occupancy grid
representation from range sensor measurements

» SLAM is a process of creating a map by also estimating a robot's pose; the problem is concerned
with finding an estimate of the distribution of maps and a robot’s pose (online SLAM) or a robot’s
path (full SLAM)

» There is a large variety of SLAM algorithms; mirroring our localisation discussion, we concretely
looked at EKF SLAM, which is an algorithm based on extended Kalman filters, and FastSLAM,
which uses a Rao-Blackwellised particle filter

> Visual SLAM uses data from cameras (exclusively or combined with other data sources) to create a
visual 3D map

» Solving the feature correspondence problem is an essential component of all SLAM algorithms
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