Hochschule Bonn-Rhein-Sieg University of Applied Sciences

Simultaneous Localisation and Mapping (SLAM)

Dr. Alex Mitrevski Master of Autonomous Systems

Structure

- Mapping preliminaries
- Occupancy grid mapping
- Simultaneous localisation and mapping (SLAM)
- SLAM algorithms

Mapping Preliminaries

What is Mapping?

- As discussed in our previous lectures, a robot needs an environment representation so that it can act autonomously in an environment
- A representation that enables autonomous navigation is referred to as a map — the process of creating a map is called mapping
- Particularly for planar navigation, occupancy grids are quite commonly used

A partial occupancy grid map of the second floor of the H-BRS C building

Challenges of Mapping

- ► The primary problem with mapping is that creating a map requires the robot's location to be given at all times, but determining the location needs a map to be provided
 - Mapping and localisation is thus a chicken-and-egg problem

Challenges of Mapping

- ► The primary problem with mapping is that creating a map requires the robot's location to be given at all times, but determining the location needs a map to be provided
 - Mapping and localisation is thus a chicken-and-egg problem
- All mapping procedures involve processing perceptual features and representing those in a map, but the quality and uniqueness of mapping depends on the types of features that are used for mapping
 - ▶ Think about how people map environments we need distinguishing features (e.g. flashy billboards) rather than unremarkable features (e.g. trees that all look the same)

Challenges of Mapping

- ► The primary problem with mapping is that creating a map requires the robot's location to be given at all times, but determining the location needs a map to be provided
 - Mapping and localisation is thus a chicken-and-egg problem
- All mapping procedures involve processing perceptual features and representing those in a map, but the quality and uniqueness of mapping depends on the types of features that are used for mapping
 - ▶ Think about how people map environments we need distinguishing features (e.g. flashy billboards) rather than unremarkable features (e.g. trees that all look the same)
- ► A robot may also have multiple sensors and thus create multiple maps; in this case, there is a need to combine maps that are based on multiple sensor modalities

Mapping and Feature Correspondences

 Except in cases where perceptual features have unique IDs (e.g. unique QR codes), a correspondence problem needs to be resolved during mapping

Examples of visual feature correspondences. Taken from E. Delponte et al., "SVD-matching using SIFT features," *Graphical models*, vol. 68, no. 5-6, pp. 415–431, 2006.

Mapping and Feature Correspondences

Examples of visual feature correspondences. Taken from E. Delponte et al., "SVD-matching using SIFT features," *Graphical models*, vol. 68, no. 5-6, pp. 415–431, 2006.

- Except in cases where perceptual features have unique IDs (e.g. unique QR codes), a correspondence problem needs to be resolved during mapping
- The correspondence problem is concerned with the identification of feature identities: an observed feature should either be matched with known features or be identified as a new feature

Mapping and Feature Correspondences

Examples of visual feature correspondences. Taken from E. Delponte et al., "SVD-matching using SIFT features," *Graphical models*, vol. 68, no. 5-6, pp. 415–431, 2006.

- Except in cases where perceptual features have unique IDs (e.g. unique QR codes), a correspondence problem needs to be resolved during mapping
- The correspondence problem is concerned with the identification of feature identities: an observed feature should either be matched with known features or be identified as a new feature
- This is a challenging optimisation problem matching is typically performed by minimising a distance metric to existing features
 - The main challenge stems from perceptual ambiguities

 distinct features may look indistinguishable from
 different views
 - Computational cost is also a challenge the optimisation problem needs to be resolved continuously, as a robot moves around and collects new measurements

Mapping and Environment Representations

Occupancy grid created using a 2D laser

3D point cloud map created from RGB-D measurements. Taken from E. Sandström, Erik et al., "Point-SLAM: Dense Neural Point Cloud-based SLAM," in *Proc. IEEE/CVF Int. Conf. Computer Vision*, 2023.

The exact manner in which mapping is performed strongly depends on the representation that is used to represent the map

- > Mapping is a very active research field, with new approaches being regularly proposed
- There are, however, various commonalities between different mapping techniques, which we attempt to discuss today

We will start with the simplest type of mapping: 2D occupancy grid mapping

Occupancy Grid Mapping

Reminder: 2D Occupancy Grid

- A 2D occupancy grid is a two-dimensional discrete map that represents an environment by a set of grid cells, each of which has an occupancy probability
- ▶ We can define an occupancy grid to have the form $\mathcal{M}^{OC} = (w, h, r, o_x, o_y, OC)$, where:
 - \blacktriangleright r is the grid cell resolution (e.g. in meters)
 - \blacktriangleright w and h are the map's width and height, respectively
 - ▶ o_x and o_y represent the coordinates of the map's origin point (in continuous coordinates)
 - ▶ $OC \in \mathbb{R}^{h \times w}$ is an occupancy probability matrix, namely $OC_{i,j} \in [0,1], 1 \le i \le h, 1 \le j \le w$
- 2D occupancy grid can be acquired from 2D measurements and are very commonly used in (indoor) robotics

Occupancy Grid Mapping Formalisation

- Probabilistic ROBOTICS
- The overall objective of the occupancy grid mapping process is to approximate the posterior occupancy distribution given the robot's movements and measurements:

 $p(OC|\boldsymbol{x}_{0:t}, \boldsymbol{u}_{0:t}, \boldsymbol{z}_{1:t})$

Occupancy Grid Mapping Formalisation

- Probabilistic ROBOTICS
- The overall objective of the occupancy grid mapping process is to approximate the posterior occupancy distribution given the robot's movements and measurements:

 $p(OC|\boldsymbol{x}_{0:t}, \boldsymbol{u}_{0:t}, \boldsymbol{z}_{1:t})$

A common assumption made in occupancy grid mapping is that the occupancy probabilities are independent of each other, in which case the map probability is written as

$$p(OC|\boldsymbol{x}_{0:t}, \boldsymbol{u}_{0:t}, \boldsymbol{z}_{1:t}) = \prod_{i=1}^{h} \prod_{j=1}^{w} p(OC_{i,j}|\boldsymbol{x}_{0:t}, \boldsymbol{u}_{0:t}, \boldsymbol{z}_{1:t})$$

Occupancy Grid Mapping Formalisation

► The overall objective of the occupancy grid mapping process is to approximate the posterior occupancy distribution given the robot's movements and measurements:

 $p(OC|\boldsymbol{x}_{0:t}, \boldsymbol{u}_{0:t}, \boldsymbol{z}_{1:t})$

A common assumption made in occupancy grid mapping is that the occupancy probabilities are independent of each other, in which case the map probability is written as

$$p(OC|\boldsymbol{x}_{0:t}, \boldsymbol{u}_{0:t}, \boldsymbol{z}_{1:t}) = \prod_{i=1}^{h} \prod_{j=1}^{w} p(OC_{i,j}|\boldsymbol{x}_{0:t}, \boldsymbol{u}_{0:t}, \boldsymbol{z}_{1:t})$$

Due to potential numerical instabilities, occupancy grids are often represented through the log odds instead of through the occupancy probabilities directly:

$$LOC_{i,j} = \ln \frac{OC_{i,j}}{1 - OC_{i,j}}$$

Occupancy Grid Mapping Algorithm

```
1: function OCCUPANCYGRIDMAPPING(LOC, x_t, z_t)

2: for i \leftarrow 1 to h do

3: for j \leftarrow 1 to w do

4: if LOC_{i,j} in the field of z_t then

5: LOCi, j \leftarrow LOCi, j + InverseSensorModel((x_{LOC_{i,j}}, y_{LOC_{i,j}}), x_t, z_t) - l_0

6: return LOC
```

• Given the current robot's state x_t and a measurement z_t , the idea behind occupancy grid mapping is to update the occupancy probabilities of only those cells that fall within the sensor's field of view

Occupancy Grid Mapping Algorithm

```
1: function OCCUPANCYGRIDMAPPING(LOC, x_t, z_t)

2: for i \leftarrow 1 to h do

3: for j \leftarrow 1 to w do

4: if LOC_{i,j} in the field of z_t then

5: LOCi, j \leftarrow LOCi, j + InverseSensorModel((x_{LOC_{i,j}}, y_{LOC_{i,j}}), x_t, z_t) - l_0

6: return LOC
```

- Given the current robot's state x_t and a measurement z_t , the idea behind occupancy grid mapping is to update the occupancy probabilities of only those cells that fall within the sensor's field of view
- ► Measurements are noisy! Because of this, the update of those cells uses an inverse sensor model p(LOCi, j|z_t)

Occupancy Grid Mapping Algorithm

```
1: function OCCUPANCYGRIDMAPPING(LOC, x_t, z_t)

2: for i \leftarrow 1 to h do

3: for j \leftarrow 1 to w do

4: if LOC_{i,j} in the field of z_t then

5: LOCi, j \leftarrow LOCi, j + InverseSensorModel((x_{LOC_{i,j}}, y_{LOC_{i,j}}), x_t, z_t) - l_0

6: return LOC
```

- Given the current robot's state x_t and a measurement z_t , the idea behind occupancy grid mapping is to update the occupancy probabilities of only those cells that fall within the sensor's field of view
- ► Measurements are noisy! Because of this, the update of those cells uses an inverse sensor model p(LOCi, j|z_t)
- ► The algorithm updates the occupancies continuously, based on every new evidence dynamic obstacles that disappear quickly will thus not affect the mapping process significantly

Inverse Sensor Model

1: function INVERSESENSORMODEL $((x_{i,j}, y_{i,j}), (x_t, y_t, \theta_t), z_t)$ 2: $r \leftarrow \sqrt{(x_{i,i} - x_t)^2 + (y_{i,i} - y_t)^2}$ $\phi \leftarrow \operatorname{atan2}(y_{i,i} - y_t, x_{i,i} - x_t) - \theta_t$ 3: 4. $k \leftarrow \arg \min[\phi - \theta_{z_i}]$ if $r > \min(z_{\max}, \boldsymbol{z}_{t_k} + \alpha/2)$ or $|\phi - \theta_{\boldsymbol{z}_k}| > \beta/2$ then 5: 6: return lo if $\boldsymbol{z}_t^k < z_{\max}$ and $|r - \boldsymbol{z}_t^k| < \alpha/2$ then 7: 8: return locc 9: if $r \leq \boldsymbol{z}_{t_k}$ then 10: return lfree

The algorithm above is an inverse sensor model for a range sensor (e.g. a lidar), which returns the occupancy log odds:

$$l_{i,j} = \ln \frac{p(OC_{i,j} | \boldsymbol{x}_t, \boldsymbol{z}_t)}{1 - p(OC_{i,j} | \boldsymbol{x}_t, \boldsymbol{z}_t)}$$

Inverse Sensor Model

1: function INVERSESENSORMODEL $((x_{i,j}, y_{i,j}), (x_t, y_t, \theta_t), z_t)$ 2: $r \leftarrow \sqrt{(x_{i,i} - x_t)^2 + (y_{i,i} - y_t)^2}$ $\phi \leftarrow \operatorname{atan2}(y_{i,i} - y_t, x_{i,i} - x_t) - \theta_t$ 3: 4. $k \leftarrow \arg \min[\phi - \theta_{z_i}]$ if $r > \min(z_{\max}, \boldsymbol{z}_{t_k} + \alpha/2)$ or $|\phi - \theta_{\boldsymbol{z}_k}| > \beta/2$ then 5: 6: return lo if $\boldsymbol{z}_t^k < z_{\max}$ and $|r - \boldsymbol{z}_t^k| < \alpha/2$ then 7: 8: return locc if $r \leq \boldsymbol{z}_{t_k}$ then 9: 10: return lfree

► The algorithm above is an **inverse sensor model for a range sensor** (e.g. a lidar), which returns the occupancy log odds:

$$h_{i,j} = \ln \frac{p(OC_{i,j} | \boldsymbol{x}_t, \boldsymbol{z}_t)}{1 - p(OC_{i,j} | \boldsymbol{x}_t, \boldsymbol{z}_t)}$$

• The above model is specified for an angular range β and a distance tolerance α

Inverse Sensor Model

1: function INVERSESENSORMODEL $((x_{i,j}, y_{i,j}), (x_t, y_t, \theta_t), z_t)$ 2: $r \leftarrow \sqrt{(x_{i,i} - x_t)^2 + (y_{i,i} - y_t)^2}$ $\phi \leftarrow \operatorname{atan2}(y_{i,i} - y_t, x_{i,i} - x_t) - \theta_t$ 3: 4. $k \leftarrow \arg \min[\phi - \theta_{z_i}]$ if $r > \min(z_{\max}, \boldsymbol{z}_{t_k} + \alpha/2)$ or $|\phi - \theta_{\boldsymbol{z}_k}| > \beta/2$ then 5: 6: return lo if $\boldsymbol{z}_t^k < z_{\max}$ and $|r - \boldsymbol{z}_t^k| < \alpha/2$ then 7: 8: return locc if $r \leq \boldsymbol{z}_{t_{k}}$ then 9: 10: return lfree

The algorithm above is an inverse sensor model for a range sensor (e.g. a lidar), which returns the occupancy log odds:

$$T_{i,j} = \ln rac{p(OC_{i,j} | \boldsymbol{x}_t, \boldsymbol{z}_t)}{1 - p(OC_{i,j} | \boldsymbol{x}_t, \boldsymbol{z}_t)}$$

• The above model is specified for an angular range β and a distance tolerance α

Occupancy Grid Mapping Illustration

Real environment

Occupancy Grid Mapping Illustration

Occupancy Grid Mapping Illustration

Occupancy Grid Mapping Illustration: Dynamic Obstacle

Mapping: t = 1

Real environment

Occupancy Grid Mapping Illustration: Dynamic Obstacle

Real environment

Occupancy Grid Mapping Illustration: Dynamic Obstacle

Occupancy Grid Mapping Challenges

- The main problem of this mapping technique is that the poses are supposed to be known — perfect, noise-free motion is thus assumed
- In reality, robot motions are noisy and will accumulate over time if not corrected — this can lead a map to drift away
 - The occupancy grid mapping algorithm does not perform loop closure — recognising that a landmark has previously been seen and correcting the estimate accordingly
- ► A more general technique is thus needed one that enables a robot to recover from the accumulation of motion errors

Without loop closure and correction for a robot's noisy motion, an inaccurate map will be created

Simultaneous Localisation and Mapping (SLAM)

What is SLAM?

- SLAM is a technique based on which a robot can create an environment map while determining the pose at the same time
 - > SLAM thus aims to resolve the main problem of mapping techniques that assume perfect robot motion

What is SLAM?

- SLAM is a technique based on which a robot can create an environment map while determining the pose at the same time
 - SLAM thus aims to resolve the main problem of mapping techniques that assume perfect robot motion
- The ultimate objective of SLAM is to create an accurate environment map that can subsequently be used for localisation
 - Thus, SLAM is a mapping technique at its core the output of the procedure is the map, while the robot's pose estimates are typically discarded in the end

SLAM Formalisation

The obvious way of defining SLAM is that of computing the distribution of the current pose along with the map, given all motion commands and measurements — referred to as the online SLAM problem:

 $p(\boldsymbol{x}_t, M | \boldsymbol{u}_{0:t}, \boldsymbol{z}_{1:t})$

SLAM Formalisation

The obvious way of defining SLAM is that of computing the distribution of the current pose along with the map, given all motion commands and measurements — referred to as the online SLAM problem:

$$p(\boldsymbol{x}_t, M | \boldsymbol{u}_{0:t}, \boldsymbol{z}_{1:t})$$

In general, we may also be interested in the distribution of the full path along with the map this is referred to as the full SLAM problem:

 $p(x_{0:t}, M | u_{0:t}, z_{1:t})$

SLAM Formalisation

The obvious way of defining SLAM is that of computing the distribution of the current pose along with the map, given all motion commands and measurements — referred to as the online SLAM problem:

$$p(\boldsymbol{x}_t, M | \boldsymbol{u}_{0:t}, \boldsymbol{z}_{1:t})$$

In general, we may also be interested in the distribution of the full path along with the map this is referred to as the full SLAM problem:

 $p(x_{0:t}, M | u_{0:t}, z_{1:t})$

- SLAM is typically performed by finding correspondences between landmarks; considering correspondences explicitly, the SLAM problem can be defined as follows:
 - ► Online SLAM Problem with correspondences: $p(x_t, c_t, M | u_{0:t}, z_{1:t})$
 - Full SLAM Problem with correspondences: $p(\boldsymbol{x}_{1:t}, c_{1:t}, M | \boldsymbol{u}_{0:t}, \boldsymbol{z}_{1:t})$

How is SLAM Performed?

There is no single way of performing SLAM, but, just like in the case of localisation, many SLAM techniques are based on Bayesian filtering

- There is no single way of performing SLAM, but, just like in the case of localisation, many SLAM techniques are based on Bayesian filtering
- ► A typical SLAM algorithm performs the following steps continuously:
 - 1. A motion update is performed based on a robot's motion command

- There is no single way of performing SLAM, but, just like in the case of localisation, many SLAM techniques are based on Bayesian filtering
- ► A typical SLAM algorithm performs the following steps continuously:
 - 1. A motion update is performed based on a robot's motion command
 - 2. Sensor measurements are collected, and feature extraction is performed

- There is no single way of performing SLAM, but, just like in the case of localisation, many SLAM techniques are based on Bayesian filtering
- ► A typical SLAM algorithm performs the following steps continuously:
 - 1. A motion update is performed based on a robot's motion command
 - 2. Sensor measurements are collected, and feature extraction is performed
 - 3. Feature predictions are made based on the robot's hypothesised location

- There is no single way of performing SLAM, but, just like in the case of localisation, many SLAM techniques are based on Bayesian filtering
- ► A typical SLAM algorithm performs the following steps continuously:
 - 1. A motion update is performed based on a robot's motion command
 - 2. Sensor measurements are collected, and feature extraction is performed
 - 3. Feature predictions are made based on the robot's hypothesised location
 - 4. A solution to the correspondence problem is found

- There is no single way of performing SLAM, but, just like in the case of localisation, many SLAM techniques are based on Bayesian filtering
- ► A typical SLAM algorithm performs the following steps continuously:
 - 1. A motion update is performed based on a robot's motion command
 - 2. Sensor measurements are collected, and feature extraction is performed
 - 3. Feature predictions are made based on the robot's hypothesised location
 - 4. A solution to the correspondence problem is found
 - 5. The existing features are updated as necessary, or a new feature is recorded in the map

- There is no single way of performing SLAM, but, just like in the case of localisation, many SLAM techniques are based on Bayesian filtering
- ► A typical SLAM algorithm performs the following steps continuously:
 - 1. A motion update is performed based on a robot's motion command
 - 2. Sensor measurements are collected, and feature extraction is performed
 - 3. Feature predictions are made based on the robot's hypothesised location
 - 4. A solution to the correspondence problem is found
 - 5. The existing features are updated as necessary, or a new feature is recorded in the map
- SLAM algorithms differ in the way in which they perform the above steps

SLAM Challenges

Unlike localisation, SLAM is a high-dimensional problem — the map features and feature correspondences need to be considered in addition to the pose

SLAM Challenges

- Unlike localisation, SLAM is a high-dimensional problem the map features and feature correspondences need to be considered in addition to the pose
- SLAM also requires a solution to the correspondence problem, which is challenging in general not just in the context of SLAM

SLAM Challenges

- Unlike localisation, SLAM is a high-dimensional problem the map features and feature correspondences need to be considered in addition to the pose
- SLAM also requires a solution to the correspondence problem, which is challenging in general not just in the context of SLAM
- The incorporation of new information into existing maps is also generally difficult dynamic mapping may lead to deterioration of known maps

SLAM Algorithms

SLAM Techniques

▶ On the following slides, we will look at two major SLAM techniques:

EKF SLAM	FastSLAM
A SLAM algorithm that uses an extended Kalman filter	An algorithm using a Rao-Blackwellised particle filter (combining a particle filter with EKFs)

We will also take a very brief look at visual SLAM — the currently predominant SLAM paradigm using visual information

EKF SLAM

▶ In EKF SLAM, the state representation combines the robot's pose with the positions and identities of the features in the map; considering N features $m_i, 1 \le i \le N$ with positions (m_{i_x}, m_{i_y}) and identities m_{i_s} , the state in EKF SLAM is represented as

$$oldsymbol{y}_t = egin{pmatrix} oldsymbol{x}_t & oldsymbol{m}_t \end{pmatrix}^T = egin{pmatrix} x & y & heta & m_{1_x} & m_{1_y} & m_{1_s} & ... & m_{N_x} & m_{N_y} & m_{N_s} \end{pmatrix}^T$$

- ▶ EKF SLAM can be performed relatively easily if the feature identities are known (e.g. if features have unique identities that can be easily identified)
- In the more general case of unknown feature identities, the algorithm needs to solve the correspondence problem


```
1:
               Algorithm EKF SLAM known correspondences(u_1, \Sigma_1, u_1, u_2, c_2)
                                    1 0 0 0 ....0
                                     0 1 0 0 ... 0
2:
                     F_x =
                                    0 0 1 0...0
                                                                3.N
                                                           \frac{-\frac{w_t}{\omega_t}\sin\mu_{t-1,\theta} + \frac{w_t}{\omega_t}\sin(\mu_{t-1,\theta} + \omega_t\Delta t)}{\frac{w_t}{\omega_t}\cos\mu_{t-1,\theta} - \frac{w_t}{\omega_t}\cos(\mu_{t-1,\theta} + \omega_t\Delta t)}
2
                     \bar{\mu}_{t} = \mu_{t-1} + F_{\pi}^{T}
                                                                                             \omega_t \Delta t
                    G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{\psi_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{\psi_t}{\omega_t} \cos (\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{\psi_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{\psi_t}{\omega_t} \sin (\mu_{t-1,\theta} + \omega_t \Delta t) \end{pmatrix} F_x
                                                     0 0
                     \Sigma_t = G_t \Sigma_{t-1} G_t^T + F_x^T R_t F_x
                                 1 02 0 0
                     Q_t = \begin{pmatrix} 0 & \sigma_A^2 & 0 \end{pmatrix}
                                      0 0 02
                     for all observed features z_i^i = (r_i^i \phi_i^i s_i^i)^T do
8
                           j = c_t^i
9.
                           if landmark j never seen before
                                                                                    \int r_{1}^{4} \cos(\phi_{1}^{4} + \bar{\mu}_{4,\theta})
                                       Bi.e.
                                                             1 14. 2 )
10
                                      \begin{bmatrix} \bar{\mu}_{j,y} \\ \bar{\mu}_{j,y} \end{bmatrix} = \begin{pmatrix} \bar{\mu}_{t,y} \\ s_t^{\dagger} \end{pmatrix} + \begin{pmatrix} r_t^{\dagger} \sin(\phi_t^{\dagger} + \bar{\mu}_{t,\theta}) \\ 0 \end{bmatrix}
                                      ū.,..
11:
                           endit
12:
                           \delta =
                                       \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix}
                                                               \mu_{j,x} - \mu_{t,x}
\mu_{j,y} - \mu_{t,y}
13:
                           a = \delta^{0}
14:
                           £1 - (
                                          \operatorname{atan2}(\delta_y, \delta_x) - \overline{\mu}_{t,\theta}
                                                         \mu_{j,a}
                                              1 0 0 0...0 0 0 0 0...0
                                               0
                                                                     0...0 0 0 0 0...0
                                               - 0
                                                                                            ñ.
                                                                                                          0....0
15
                                               0 0
                           F_{n,i} =
                                                              0 0...0
                                                                                            0
                                                                                                           0...
                                                                                                           0...0
                                               0 0
                                                             0 0...0 0 1
                                               0 0 0 0...0 0 0 1
                                                                                                          0...0
                                                                       24-2
                                                                                                           2N-21
                                                -\sqrt{q}\delta_x
                                                                -\sqrt{q}\delta_y
                                                                                  \begin{pmatrix} 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y & 0 \\ -q & -\delta_y & +\delta_x & 0 \\ 0 & 0 & 0 & q \end{pmatrix} F_{x,j}
                                                                                 -q
0
16:
                           H_{4}^{i} = \frac{1}{2}
                                                                     -6.
                                                     Su.
                                                                        K_t^i = \bar{\Sigma}_t H_t^{tT} (H_t^i \bar{\Sigma}_t H_t^{tT} + Q_t)^{-1}
18
                           \bar{\mu}_{t} = \bar{\mu}_{t} + K_{t}^{i}(z_{t}^{i} - \hat{z}_{t}^{i})
19
                          \Sigma_{t} = (I - K_{t}^{t} H_{t}^{t}) \Sigma_{t}
 20:
                     endfor
 21:
                     \mu_{t} = \bar{\mu}_{t}
 22.
                     \Sigma_{t} = \bar{\Sigma}_{t}
 23:
                     return us. De
```


Hochschule

Motion update of the robot's pose

Hochschule

Hochschule

Hochschule

Hochschule

Bonn-Aachen International Center for

In the unknown correspondence case, each observed feature is either matched to one of the known features — for instance, using maximum likelihood estimation — or a new feature is an all known features exceed a distance threshold

1: Algorithm EKF_SLAM($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, N_{t-1}$): 2: $N_{t} = N_{t-1}$ 3: $F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots & 0 \\ 0 & 1 & 0 & 0 \cdots & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$ 4: $\bar{\mu}_t = \mu_{t-1} + F_x^T \left(\begin{array}{c} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \dots \Delta t \end{array} \right)$ 5: $G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos (\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin (\mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin (\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x$ 6: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + F_s^T R_t F_s$ 7: $Q_t = \begin{pmatrix} \sigma_r & 0 & 0 \\ 0 & \sigma_{\phi} & 0 \\ 0 & 0 & - \end{pmatrix}$ 8: for all observed features $z_i^i = (r_i^i \phi_i^i s_i^i)^T$ do 9: $\begin{pmatrix} \bar{\mu}_{N_t+1,x} \\ \bar{\mu}_{N_t+1,y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + r_t^i \begin{pmatrix} \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{pmatrix}$ 10: for k = 1 to $N_t + 1$ do 11: $\delta_k = \begin{pmatrix} \delta_{k,x} \\ \delta_{k,y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{k,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{k,y} - \bar{\mu}_{t,y} \end{pmatrix}$ $q_k = \delta_k^T \delta_k$ 12:

Hochschule

Bonn-Rhein-Siea

University of Applied Sciences

13: $\hat{z}_{t}^{k} = \begin{pmatrix} \sqrt{q_{k}} \\ \operatorname{atan2}(\delta_{k,y}, \delta_{k,x}) - \bar{\mu}_{t,\theta} \end{pmatrix}$ $14: \qquad F_{x,k} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 \end{pmatrix}$ 15: $H_t^k = \frac{1}{q_k} \begin{pmatrix} -\sqrt{q_k} \delta_{k,x} - \sqrt{q_k} \delta_{k,y} & 0 & \sqrt{q_k} \delta_{k,x} & \sqrt{q_k} \delta_{k,y} & 0 \\ \delta_{k,y} & -\delta_{k,x} & -1 & -\delta_{k,y} & \delta_{k,x} & 0 \\ \delta_{k,y} & 0 & 0 & 0 \end{pmatrix} F_{x,k}$ 16 $\Psi_k = H_i^k \, \bar{\Sigma}_i \, [H_i^k]^T + O_i$ $\pi_k = (z_i^i - \hat{z}_i^k)^T \Psi_i^{-1} (z_i^i - \hat{z}_i^k)$ 17: 18: endfor 10 $\pi_{N,\pm 1} = \alpha$ $j(i) = \operatorname{argmin} \pi_k$ $N_t = \max\{N_t, j(i)\}$ 21. 22: $K_{i}^{i} = \bar{\Sigma}_{t} [H_{t}^{j(i)}]^{T} \Psi_{t}^{-1}$ 23: $\bar{\mu}_{t} = \bar{\mu}_{t} + K_{t}^{i} \left(z_{t}^{i} - \hat{z}_{t}^{j(i)} \right)$ 24: $\bar{\Sigma}_t = (I - K_t^i H_t^{j(i)}) \bar{\Sigma}_t$ 25: endfor 26: $\mu_t = \bar{\mu}_t$ 27: $\Sigma_t = \bar{\Sigma}_t$

Simultaneous Localisation and Mapping (SLAM)

University of Applied Sciences

In the unknown correspondence case, each observed feature is either matched to one of the known features — for instance, using maximum likelihood estimation — or a new feature is an all known features exceed a distance threshold

Simultaneous Localisation and Mapping (SLAM)

University of Applied Sciences

In the unknown correspondence case, each observed feature is either matched to one of the known features — for instance, using maximum likelihood estimation — or a new feature is and all known features exceed a distance threshold

- Just as in the localisation case, only a single hypothesis is pursued by EKF SLAM additional recovery procedures need to be implemented to recover from a localisation loss
- ▶ With a large number of features, EKF SLAM needs to work with large matrices (in the order of the number of features N) the algorithm can thus be memory and computationally expensive
- ► The algorithm does not consider features that have not been observed, but which should have been under the pose hypothesis

FastSLAM

- ► FastSLAM is a particle filter-based SLAM algorithm that solves the full SLAM problem
- As in EKF SLAM, the state representation combines the robot's path and the states of features, such that each feature is represented by an extended Kalman filter
 - \blacktriangleright Thus, each feature $oldsymbol{m}_i, 1 \leq i \leq N$ has an associated Gaussian distribution $oldsymbol{\mu}_i, \Sigma_i$

▶ Each particle p^j , $1 \le j \le M$ in FastSLAM is represented as follows:

$$\boldsymbol{p}^{j} = \left[\left(x_{1}, y_{1}, \theta_{1} \right), \dots, \left(x_{t}, y_{t}, \theta_{t} \right), \left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1} \right), \dots, \left(\boldsymbol{\mu}_{N}, \boldsymbol{\Sigma}_{N} \right), w^{j} \right]$$

FastSLAM is based on an insight that poses and features are conditionally independent given the control updates, measurements, and correspondences, so the posterior distribution is given as

$$p(\boldsymbol{y}_{1:t}|\boldsymbol{u}_{1:t}, \boldsymbol{z}_{1:t}, \boldsymbol{c}_{1:t}) = p(\boldsymbol{x}_{1:t}|\boldsymbol{u}_{1:t}, \boldsymbol{z}_{1:t}, \boldsymbol{c}_{1:t}) \prod_{i=1}^{N} p(\boldsymbol{m}_{i}|\boldsymbol{u}_{1:t}, \boldsymbol{z}_{1:t}, \boldsymbol{c}_{1:t})$$

This factorisation is known as Rao-Blackwellisation, and thus the particle filter as a **Rao-Blackwellised particle filter**

1: Algorithm FastSLAM 1.0_known_correspondence(z_t, c_t, u_t, Y_{t-1}):

2:	for $k = 1$ to M do	// loop over all particles
3:	retrieve $\left\langle x_{t-1}^{[k]}, \left\langle \mu_{1,t-1}^{[k]}, \Sigma_{1,t-1}^{[k]} \right\rangle, \ldots \right.$	$\left(\left(\mu_{N,t-1}^{[k]}, \Sigma_{N,t-1}^{[k]} \right) \right)$ from Y_{t-1}
4:	$x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t)$	// sample pose
5:	$j = c_t$	// observed feature
6:	if feature j never seen before	
7:	$\mu_{i,t}^{[k]} = h^{-1}(z_t, x_t^{[k]})$	// initialize mean
8:	$H = h'(x_{i}^{[k]}, \mu_{i}^{[k]})$	// calculate Jacobian
9:	$\Sigma_{t,t}^{[k]} = H^{-1} Q_t (H^{-1})^T$	// initialize covariance
10:	$w^{[k]} = p_0$	// default importance weight
11:	else	1 0
12:	$\hat{z} = h(\mu_{i,i-1}^{[k]}, x_i^{[k]})$	// measurement prediction
13:	$H = h'(x^{[k]}, \mu^{[k]},)$	// calculate Jacobian
14:	$Q = H \Sigma^{[k]}$, $H^T + Q_i$	// measurement covariance
15:	$K = \Sigma_{k=1}^{[k]} H^T Q^{-1}$	// calculate Kalman gain
16:	$\mu_{k}^{[k]} = \mu_{k}^{[k]} + K(z_{\ell} - \hat{z})$	// update mean
17:	$\Sigma_{j,t}^{[k]} = (I - K H) \Sigma_{j,t-1}^{[k]}$	// update covariance
18:	$w^{[k]} = 2\pi Q ^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}(z_t - \hat{z}_s)\right\}$) ^T
	$Q^{-1}(z_{\ell} -$	\hat{z}_n) $\} / / importance factor$
19:	endif	
20:	for all other features $j' \neq j$ do	// unobserved features
21:	$\mu_{j',t}^{[k]} = \mu_{j',t-1}^{[k]}$	// leave unchanged
22:	$\Sigma_{i',i}^{[k]} = \Sigma_{i',i-1}^{[k]}$	
23:	endfor	
24:	endfor	
25:	$Y_t = \emptyset$	// initialize new particle set
26:	do M times	// resample M particles
27:	draw random k with probability \propto	w ^[k] // resample
28:	add $\langle x_t^{[k]}, \langle \mu_{1,t}^{[k]}, \Sigma_{1,t}^{[k]} \rangle, \dots, \langle \mu_N^{[k]}, \Sigma$	$\binom{[k]}{N}$ to Y_t
29:	endfor	
30:	return Y _t	

Autonomous Systems

Algorithm FastSLAM 1.0 known correspondence(z, c, u, Y, .); for k = 1 to M do // loop over all particles retrieve $\langle x_{t-1}^{[k]}, \langle \mu_{1,t-1}^{[k]}, \Sigma_{1,t-1}^{[k]} \rangle, \dots, \langle \mu_{N,t-1}^{[k]}, \Sigma_{N,t-1}^{[k]} \rangle \rangle$ from Y_{t-1} $x_{i}^{[k]} \sim p(x_{i} \mid x_{i}^{[k]}, u_{i})$ // sample pose // observed feature if feature i never seen before $\mu_{i,i}^{[k]} = h^{-1}(z_t, x_t^{[k]})$ // initialize mean $H = h'(x_i^{[k]}, \mu_{i,i}^{[k]})$ // calculate Iacobian $\Sigma_{j,t}^{[k]} = H^{-1} Q_t (H^{-1})^T$ $w^{[k]} = p_0$ // initialize covariance 10 // default importance weight 11: else $\begin{aligned} \hat{z} &= h(\mu_{j,t-1}^{[k]}, x_t^{[k]}) \\ H &= h'(x_t^{[k]}, \mu_{j,t-1}^{[k]}) \\ Q &= H \sum_{i=1}^{[k]} L_{i,t-1}^{[k]} H^T + Q_t \\ K &= \sum_{i=1}^{[j]} L_{j,t-1}^{[k]} H^T Q^{-1} \end{aligned}$ 12: // measurement prediction 13: // calculate Jacobian 14: // measurement covariance 15 // calculate Kalman gain $\mu_{i,t}^{[k]} = \mu_{i,t-1}^{[k]} + K(z_t - \hat{z})$ 16: // update mean 17: $\Sigma_{i,I}^{[k]} = (I - K H) \Sigma_{i,I-1}^{[k]}$ // update covariance 18: $w^{[k]} = |2\pi Q|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}(z_t - \hat{z}_n)^T\right\}$ $O^{-1}(z_t - \hat{z}_n) \} / /$ importance factor 19: andif 20: for all other features i' \$\nother i do // unobserved features 21: $\begin{array}{l} \mu_{j',t}^{[k]} = \mu_{j',t-1}^{[k]} \\ \Sigma_{j',t}^{[k]} = \Sigma_{j',t-1}^{[k]} \end{array}$ // leave unchanged 22: 23. ondfor 24: endfor 25 $V_1 = \emptyset$ // initialize new particle set 26. do M timos // resample M particles 27: draw random k with probability $\propto w^{[k]}$ // resample 28add $\langle x_t^{[k]}, \langle \mu_{1,t}^{[k]}, \Sigma_{1,t}^{[k]} \rangle, \dots, \langle \mu_N^{[k]}, \Sigma_N^{[k]} \rangle \rangle$ to Y_t 29 endfor 30: return Y

Motion update of the particle's pose

Hochschule

for k = 1 to M do //loop over all particles retrieve $\langle x_{t-1}^{[k]}, \langle \mu_{1,t-1}^{[k]}, \Sigma_{1,t-1}^{[k]} \rangle, \dots, \langle \mu_{N,t-1}^{[k]}, \Sigma_{N,t-1}^{[k]} \rangle \rangle$ from Y_{t-1} $x_{i}^{[k]} \sim p(x_{i} \mid x_{i}^{[k]}, u_{i})$ // sample pose // observed feature if feature i never seen before $\mu_{t,t}^{[k]} = h^{-1}(z_t, x_t^{[k]})$ $H = h'(x_t^{[k]}, \mu_{t,t}^{[k]})$ // calculate Iacobian $\Sigma_{j,t}^{[k]} = H^{-1} Q_t (H^{-1})^T$ $w^{[k]} = p_0$ // initialize covariance 10 // default importance weight 11: else $\begin{aligned} \hat{z} &= h(\mu_{j,t-1}^{[k]}, x_t^{[k]}) \\ H &= h'(x_t^{[k]}, \mu_{j,t-1}^{[k]}) \\ Q &= H \sum_{i=1}^{[k]} L_{i,t-1}^{[k]} H^T + Q_t \\ K &= \sum_{i=1}^{[j]} L_{j,t-1}^{[k]} H^T Q^{-1} \end{aligned}$ 12: // measurement prediction 13: // calculate Jacobian 14: // measurement covariance 15 // calculate Kalman gain $\mu_{i,t}^{[k]} = \mu_{i,t-1}^{[k]} + K(z_t - \hat{z})$ 16: // update mean 17: $\Sigma_{i,I}^{[k]} = (I - K H) \Sigma_{i,I-1}^{[k]}$ // update covariance 18: $w^{[k]} = |2\pi Q|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}(z_t - \hat{z}_n)^T\right\}$ $O^{-1}(z_t - \hat{z}_n) \} / / \text{importance factor}$ 19: andif 20: for all other features i' z i do // unobserved features 21: $\begin{array}{l} \mu_{j',t}^{[k]} = \mu_{j',t-1}^{[k]} \\ \Sigma_{j',t}^{[k]} = \Sigma_{j',t-1}^{[k]} \end{array}$ // leave unchanged 22: 23. ondfor 24: endfor 25 $V_1 = \emptyset$ // initialize new particle set 26. do M timos // resample M particles 27: draw random k with probability $\propto w^{[k]}$ // resample 28add $\langle x_t^{[k]}, \langle \mu_{1,t}^{[k]}, \Sigma_{1,t}^{[k]} \rangle, \dots, \langle \mu_N^{[k]}, \Sigma_N^{[k]} \rangle \rangle$ to Y_t 29 endfor 30: return Y

Algorithm FastSLAM 1.0 known correspondence(z, c, u, Y, .);

Motion update of the particle's pose

Initialisation of a new feature's position

Algorithm FastSLAM 1.0 known correspondence(z, c, u, Y, .);

Hochschule

ababilistic P.O.B.O.T.I.C.S

As in EKF SLAM, if the correspondences are not given, each observed feature is either matched to the known features or a new feature is added; this operation needs to be performed for every particle!

1: /	Algorithm FastSLAM 1.0(z_t, u_t, Y_{t-1}):	
2:	for $k = 1$ to M do	// loop over all particles
3:	retrieve $\langle x_{t-1}^{[k]}, N_{t-1}^{[k]}, \langle \mu_{1,t-1}^{[k]}, \Sigma_{1,t-1}^{[k]} \rangle$	$ i_{t-1}^{[i]}, i_{1}^{[k]}\rangle, \dots,$
	$\left< \mu_{N_{t-1}^{[k]},t-1}^{[k]}, \Sigma_{N_{t-1}^{[k]},t-1}^{[k]} \right.$	$\left i_{N_{t-1}^{[k]},t-1}^{[k]} \right\rangle $ from Y_{t-1}
4:	$x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t)$	// sample new pose
5:	for $j = 1$ to $N_{t-1}^{[k]}$ do	// measurement likelihoods
6:	$\hat{z}_j = h(\mu_{j,i-1}^{[k]}, x_i^{[k]})$	// measurement prediction
7:	$H_j = h'(\mu_{j,t-1}^{[k]}, x_t^{[k]})$	// calculate Jacobian
8:	$Q_j = H_j \Sigma_{j,t-1}^{[k]} H_j^T + Q_t$	// measurement covariance
9:	$w_j = 2\pi Q_j ^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}(z_t - \frac{1}{2})\right\}$	$\hat{z}_j)^T$
	$Q_j^{-1}(z_t - \hat{z}_j)$	// likelihood of correspondence
10:	endfor	
11:	$w_{1+N_{t-1}^{\{k\}}}=p_{0}$	// importance factor, new feature
12:	$w^{[k]} = \max w_j$	// max likelihood correspondence
13:	$\hat{c} = \operatorname{argmax} w_j$	// index of ML feature
14:	$N_t^{[k]} = \max\{N_{t-1}^{[k]}, \hat{c}\}$	// new number of features in map
15:	for $j = 1$ to $N_t^{[k]}$ do	// update Kalman filters
16:	if $j = \hat{c} = 1 + N_{t-1}^{[k]}$ then	// is new feature?
17:	$\mu_{j,t}^{[k]} = h^{-1}(z_t, x_t^{[k]})$	// initialize mean
18:	$H_j = h'(\mu_{j,t}^{[k]}, x_t^{[k]}); \Sigma_{j,t}^{[k]} = (H_j)$	$(f_j^{-1})^T Q_t H_j^{-1}$ // initialize covar.
19:	$i_{j,t}^{[k]} = 1$	// initialize counter
20:	else if $j = \hat{c} \leq N_{t-1}^{[k]}$ then	// is observed feature?
21:	$K = \Sigma_{j,t-1}^{[k]} H_j^T Q_{\hat{e}}^{-1}$	// calculate Kalman gain
22:	$\mu_{j,t}^{[k]} = \mu_{j,t-1}^{[k]} + K(z_t - \hat{z}_{\hat{z}})$	// update mean
23:	$\Sigma_{j,t}^{[k]} = (I - K H_j)\Sigma_{j,t-1}^{[k]}$	// update covariance
24:	$i_{j,t}^{[k]} = i_{j,t-1}^{[k]} + 1$	// increment counter

tochschule

of Applied Sciences

25:	else	// all other features
26:	$\mu_{k}^{[k]} = \mu_{k}^{[k]}$	// copy old mean
27:	$\Sigma^{[k]} = \Sigma^{[k]}$	// copy old covariance
28:	if $\mu_{k}^{[k]}$, outside perceptual	
	range of $x_i^{[k]}$ then	// should feature have been seen?
29:	$i_{j,t}^{(k)} = i_{j,t-1}^{(k)}$	// no, do not change
30:	else	
31:	$i_{j,\ell}^{(k)} = i_{j,\ell-1}^{(k)} - 1$	// yes, decrement counter
32:	<i>if</i> $i_{2,t-1}^{[k]} < 0$ <i>then</i>	
33:	discard feature j	// discard dubious features
34:	endif	
35:	endif	
36:	endif	
37:	endfor	
38:	$add \left\langle x_{t}^{[k]}, N_{t}^{[k]}, \left\langle \mu_{1,t}^{[k]}, \Sigma_{1,t}^{[k]}, i_{1}^{[k]} \right\rangle \right.$	$,\ldots,\left\langle \boldsymbol{\mu}_{N_{t}^{\left[k\right]},t}^{\left[k\right]},\boldsymbol{\Sigma}_{N_{t}^{\left[k\right]},t}^{\left[k\right]},\boldsymbol{i}_{N_{t}^{\left[k\right]}}^{\left[k\right]}\right\rangle \right\rangle toY_{\mathrm{aux}}$
39:	endfor	//
40:	$Y_t = \emptyset$	// construct new particle set
41:	do M times	// resample M particles
42:	draw random index k with probability $\propto w^{[k]}$	// resample
43:	$add \left\langle x_{t}^{[k]}, N_{t}^{[k]}, \left\langle \mu_{1,t}^{[k]}, \Sigma_{1,t}^{[k]}, i_{1}^{[k]} \right\rangle \right.$	$,, \left\langle \mu_{N_{t}^{[k]}, t}^{[k]}, \Sigma_{N_{t}^{[k]}, t}^{[k]}, i_{N_{t}^{[k]}}^{[k]} \right\rangle \right\rangle$ to Y_{t}
44:	enddo	
45:	return Y_t	

As in EKF SLAM, if the correspondences are not given, each observed feature is either matched to the known features or a new feature is added; this operation needs to be performed for every particle

1: A	Igorithm FastSLAM 1.0(z_t, u_t, Y_{t-1}):			25:	else	// all other features
2:	for $k = 1$ to M do	// loop over all particles		26:	$\mu_{j,t}^{[k]} = \mu_{j,t-1}^{[k]}$	// copy old mean
2	metricula $/ \frac{k}{2} = \frac{1}{2} \frac{k}{2} \frac{k}{2$	(i) (ii)		27:	$\Sigma_{j,t}^{[k]} = \Sigma_{j,t-1}^{[k]}$	// copy old covariance
3.	$ \begin{cases} \mu_{i-1}^{[k]}, \nu_{i-1}, \langle \mu_{1,i-1}^{[k]}, \Sigma_{1}^{[k]} \\ \\ \begin{pmatrix} \mu_{N_{i-1}^{[k]}, t-1}^{[k]}, \Sigma_{N_{i-1}^{[k]}, t-1}^{[k]} \end{cases} \end{cases} $	$\left i = 1, i_1 \\ i_{N_{t-1}^{[k]}, t-1} \right\rangle $ from Y_{t-1}		28:	if $\mu_{j,t-1}^{[k]}$ outside perceptual range of $x_t^{[k]}$ then $i_t^{[k]} = i_t^{[k]}$,	<pre>// should feature have been seen? // no, do not change</pre>
4:	$x_t^{[k]} \sim p(x_t \mid x_{t-1}^{[k]}, u_t)$	// sample new pose		30:	else	,,,
5:	for $j = 1$ to $N_{t-1}^{[k]}$ do	// measurement likelihoods		31:	$i_{k,k}^{(k)} = i_{k,k-1}^{(k)} - 1$	// yes, decrement counter
6:	$\hat{z}_j = h(\mu_{j,t-1}^{[k]}, x_t^{[k]})$	// measurement prediction		32:	if $i_{i,t-1}^{[k]} < 0$ then	
7:	$H_j = h'(\mu_{j,t-1}^{[k]}, x_t^{[k]})$	// calculate Jacobian	Similarity	33:	discard feature j	// discard dubious features
8:	$Q_j = H_j \Sigma_{j,\ell-1}^{[k]} H_j^T + Q_\ell$	// measurement covariance		34:	endif	
9:	$w_i = 2\pi Q_i ^{-\frac{1}{2}} \exp \{-\frac{1}{2}(z_t -$	$(\hat{z}_i)^T$	calculation	35:	endif	
	$Q_j^{-1}(z_t - \hat{z}_j)$	// likelihood of correspondence		36:	endif	
10:	endfor			37:	endfor	
11:	$w_{1+N_{t-1}^{[k]}} = p_0$	// importance factor, new feature		38:	$add \left\langle x_{t}^{[k]}, N_{t}^{[k]}, \left\langle \mu_{1,t}^{[k]}, \Sigma_{1,t}^{[k]}, i_{1}^{[k]} \right\rangle$	$\dots, \langle \mu_{N_{t}^{[k]}, t}^{[k]}, \Sigma_{N_{t}^{[k]}, t}^{[k]}, i_{N_{t}^{[k]}}^{[k]} \rangle \rangle$ to Y_{aux}
12:	$w^{[k]} = \max w_j$	// max likelihood correspondence		39:	endfor	(
13:	$\hat{c} = \operatorname{argmax} w_j$	// index of ML feature		40:	$Y_t = \emptyset$	// construct new particle set
14:	$N_{\ell}^{[k]} = \max\{N_{\ell-1}^{[k]}, \hat{c}\}$	// new number of features in map		41.	do M times	// meample M particles
15:	for $j = 1$ to $N_t^{[k]}$ do	// update Kalman filters		41.	draw random index k	// resample in particles
16:	$if j = \hat{c} = 1 + N_{t-1}^{[n]}$ then	// is new feature?			with probability $\propto w^{[k]}$	// resample
17:	$\mu_{j,t}^{[k]} = h^{-1}(z_t, x_t^{[k]})$	// initialize mean		42.	add $\left \begin{bmatrix} k \\ - \begin{bmatrix} k \end{bmatrix} \end{bmatrix} \times \begin{bmatrix} k \end{bmatrix} \left \begin{bmatrix} k \\ - \begin{bmatrix} k \end{bmatrix} \end{bmatrix} \times \begin{bmatrix} k \end{bmatrix} \left \begin{bmatrix} k \end{bmatrix} \right $	
18:	$H_j = h'(\mu_{j,t}^{[k]}, x_t^{[k]}); \Sigma_{j,t}^{[k]} = (H_j)$	$(I_j^{-1})^T Q_t H_j^{-1}$ // initialize covar.		4.31	add $\langle x_1, x_\ell, \langle \mu_{1,i}, \mu_{1,i}, \mu_{1,i}, \gamma \rangle$	$\left< \left< \frac{\mu_{N_t^{[k]},t}}{\mu_{N_t^{[k]},t}} \right> \frac{\mu_{N_t^{[k]},t}}{\mu_{N_t^{[k]}}} \right> \right> to T_t$
19:	$i_{j,t}^{[k]} = 1$	// initialize counter		44:	enddo	
20:	else if $j = \hat{c} \le N_{t-1}^{[k]}$ then	// is observed feature?		45:	return Y _t	
21:	$K = \Sigma_{j,t-1}^{[k]} H_j^T Q_{\hat{\varepsilon}}^{-1}$	// calculate Kalman gain				
22:	$\mu_{j,t}^{[k]} = \mu_{j,t-1}^{[k]} + K(z_t - \hat{z}_{\hat{\varepsilon}})$	// update mean				
23:	$\Sigma_{j,t}^{[k]} = (I - K H_j) \Sigma_{j,t-1}^{[k]}$	// update covariance				
24:	$i_{j,t}^{[k]} = i_{j,t-1}^{[k]} + 1$	// increment counter				

As in EKF SLAM, if the correspondences are not given, each observed feature is either matched to the known features or a new feature is added; this operation needs to be performed for every particle!

2 for $k = 1$ to M do $//\log over all particles 3 retrieve \left\{ x_{k-1}^{[0]}, y_{k-1}^{[0]}, (x_{k-1}^{[0]}, z_{k-1}^{[0]}, (x_{k-1}^{[0]}, z_{k-1}^{[0]}, z_{k-1}^{[0]}, (x_{k-1}^{[0]}, z_{k-1}^{[0]}, z_{k-1}^{[0]}$	1: A	lgorithm FastSLAM 1.0(z_t, u_t, Y_{t-1}):			25:	else	// all other features
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.	for $k = 1$ to M do	// loop over all particles		26:	$\mu_{j,t}^{[k]} = \mu_{j,t-1}^{[k]}$	// copy old mean
$ \begin{array}{c} \text{A construct} \left(x_{1}, y_{1}^{(1)}, y_{1}, y_{1}$	2.	$matrice / m^{[k]} = N^{[k]} / m^{[k]} = \Sigma^{[k]}$	(A)		27:	$\Sigma_{j,t}^{[k]} = \Sigma_{j,t-1}^{[k]}$	// copy old covariance
$ \begin{pmatrix} \mu_{k_{1},j-1}^{(k_{1})} \sum_{j=1}^{k_{1}} \mu_{j}^{(k_{1})} \mu$	3.	$\mu_{1,i-1}, \mu_{1,i-1}, \mu_{1,i-1}$	2-1, 1 ,,		28:	if $\mu_{j,t-1}^{[k]}$ outside perceptual	
$\begin{aligned} & a_{i}^{[k]} - p(a_{i}^{[k]} a_{i}^{[k]} a_{i}^{[$		$\left\langle \mu_{N_{*}^{[k]}, t-1}^{[k]}, \Sigma_{N_{*}^{[k]}, t-1}^{[k]} \right\rangle$	$\left \frac{i^{[k]}_{N_{t}^{[k]}, t-1}}{N_{t}^{[k]}, t-1} \right\rangle $ from Y_{t-1}			range of $x_t^{(\kappa)}$ then	// should feature have been seen?
$\begin{aligned} \frac{1}{2} & \frac{\pi ^{n} - p(\mathbf{c}_{1} \mathbf{z}_{1}^{(n)}, \dots, \mathbf{z}_{n}^{(n)} \mathbf{z}_{n}^{(n)}, \dots, \mathbf{z}_{n$			1-1-17		29:	$i_{j,t}^{[k]} = i_{j,t-1}^{[k]}$	// no, do not change
$ \begin{aligned} & f(r) = 1 \text{ to } N_{1}^{(r)}, do & // \text{ maxument hicklihoods} \\ & & & & & & & & & & & & & & & & & & $	4:	$x_t^{(n)} \sim p(x_t \mid x_{t-1}^{(n)}, u_t)$	// sample new pose	1	30:	else	
$ \begin{array}{c} c \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \ldots, s^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \mu_{j}^{2}, \mu_{j}^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \mu_{j}^{2}, \mu_{j}^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \mu_{j}^{2}, \mu_{j}^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \mu_{j}^{2}, \mu_{j}^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \mu_{j}^{2}, \mu_{j}^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \mu_{j}^{2}, \mu_{j}^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \mu_{j}^{2}, \mu_{j}^{2}), & (f \otimes h^{2})_{j} = 0 \\ \hline s_{j} = h(\mu_{j}^{2}, \mu_{j}^{2}, \mu_$	5:	for $j = 1$ to $N_{t-1}^{(r)}$ do	// measurement likelihoods		31:	$i_{j,t}^{(\kappa)} = i_{j,t-1}^{(\kappa)} - 1$	// yes, decrement counter
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6:	$\hat{z}_j = h(\mu_{j,t-1}^{(n)}, x_t^{(n)})$	// measurement prediction	Charlington	32:	if $i_{j,t-1}^{[\kappa]} < 0$ then	
8 $Q_i = H_i \sum_{j=1}^{N_i} H_j^* = Q_i$ // measurement covariance 9 $w_j = [2\pi_i]_i^{-1} = e_{ij} + Q_i$ // initialized of correspondence 10 $w_j = 2\pi_i^{-1} f_{ij} = p_i$ // inportance factor, new feature 11 $w_{1+N_{i}}^{(n)} = p_0$ // importance factor, new feature 12 $w^{(1)} = \max w_j$ // max likelihood correspondence 13 $k^{(n)} = \max w_j$ // max likelihood correspondence 14 $N_i^{(n)} = \max W_j$ // index of ML feature 15 for j = 1 to $N_i^{(n)}$ do // update Kalman filters 16 $H_j = c^{-1} + N_{i}^{(n)} f_j = h^{-1} (x_i - k_j)$ // initialize covar 18 $H_j = h^{(n)} (\mu_j^{(1)}, u_j^{(1)}, u_j^{($	7:	$H_j = h'(\mu_{j,t-1}^{[n]}, x_t^{[n]})$	// calculate Jacobian	Similarity	33:	discard feature j	// discard dubious features
9. $ \begin{aligned} w_{j} = 2\pi c_{ij}^{-1} \frac{1}{2} \exp\left(-\frac{1}{2}(z_{i} - z_{j})^{T}\right) \\ Q_{j}^{-1}(z_{i} - z_{j}) \\ Q_{j}^{-1}(z_{i} - z_{j}) \\ (I - z_{i} - z_{i}) \\ (I - z_{i} - z_{i} - z_{i}) \\ (I - z_{i} - z_{i} - z_{i}) \\ (I - z_{i} - z_{i} - z_{i} - z_{i}) \\ (I - z_{i} \\ (I - z_{i} - $	8:	$Q_j = H_j \Sigma_{j,t-1}^{[k]} H_j^T + Q_t$	// measurement covariance	an low lot in m	34:	endif	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9:	$w_j = 2\pi Q_j ^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}(z_\ell -$	$\hat{z}_j)^T$	calculation	35:	endif	
10. $endor$ 11. $w_{1,k}w_{1,k}^{[k]} = p_0$ // / / // mortance factor, new feature 12. $w_{1,k}w_{1,k}^{[k]} = p_0$ // / // mortance factor, new feature 13. $k^{[k]} = \max w_j$ // max likelihood correspondence 14. $N_{1,k}^{[k]} = \max w_j$ // / index of ML feature 15. $(r_j = i = 1, N_{1,k}^{[k]})$ // / / mortance factors in map 16. $(i_j = i = 1, N_{1,k}^{[k]})$ // / mortance factors in map 17. $p_{1,k}^{[k]} = h^{-1}(x_{i,k}^{[k]})$ // / initialize mean 18. $H_j = h^{(j_{k,k})} = h^{(j_{k,k})} / / / mitalize covare$ 19. $e_{k,j}^{[k]} = h^{-1}(x_{k,j}^{[k]})$ // / initialize covare 19. $e_{k,j}^{[k]} = i = k^{-1}(x_{k,j}^{[k]})$ // / initialize covare 19. $e_{k,j}^{[k]} = i = k^{-1}(x_{k,j}^{[k]})$ // / initialize covare 20. $e_{k,j}^{[k]} = i = k^{-1}(x_{k,j}^{[k]})$ // / // update newan 21. $K = \Sigma_{j,k}^{[k]} + h^{T}(x_{k,j}^{[k]})$ // / // update mean 22. $M_{j,k}^{[k]} = (I - K \ X_{j,k}^{[k]}\ _{k}^{k}$ // // update covariance 23. $\Sigma_{j,k}^{[k]} = (I - K \ X_{j,k}^{[k]}\ _{k}^{k}$ // update covariance		$Q_j^{-1}(z_t - \hat{z}_j)$	// likelihood of correspondence		36:	endif	
11: $ \begin{split} & w_{1,N_{k}^{(k)}} = p_{0} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \max w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad // \operatorname{importance factor, new feature} \\ w^{[k]} = \sum w_{i} \qquad $	10:	endfor		J	37:	endfor	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11:	$w_{1+N^{[k]}} = p_0$	// importance factor, new feature		38-	add $\left x^{[k]} N^{[k]} \right \left x^{[k]} \Sigma^{[k]} i^{[k]} \right $	$\left \begin{array}{ccc} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.	$w^{[k]} = \max w_{i}$	// may likelihood correspondence		301	aud (x1 , 147 , (µ1,1, 21,1,11 /),	$\cdots, \langle \mu_{N_{i}^{[k]}, t}, \mu_{N_{i}^{[k]}, t}, \mu_{N_{i}^{[k]}} \rangle / \ell 0 T_{\text{aux}}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13:	$\hat{c} = \operatorname{argmax} w_i$	// index of ML feature		39:	endfor	
$\begin{array}{c} 41: do N \ times \qquad // \ resample M \ particles \\ 16: If j = i = 1 \cdot N_{+}^{[1]} \ do \qquad // \ page Kalman filters \\ 16: If j = i = 1 \cdot N_{+}^{[1]} \ do \qquad // \ page Kalman filters \\ 16: If j = i = 1 \cdot N_{+}^{[1]} \ do \qquad // \ times \ for an order \ here \ h$	14:	$N^{[k]} = \max\{N^{[k]}, \hat{c}\}$	// new number of features in map		40:	$Y_t = \emptyset$	// construct new particle set
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15:	for $i = 1$ to $N^{[k]}$ do	// update Kalman filters	·	41:	do M times	// resample M particles
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	if $i = \hat{c} = 1 + N^{[k]}$, then	// is new feature?		42:	draw random index k	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17:	$\mu_{k}^{[k]} = h^{-1}(z_{k}, x^{[k]})$	// initialize mean			with probability $\propto w^{[\kappa]}$	// resample
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18:	$H_{i} = h'(\mu^{[k]}, x^{[k]}); \Sigma^{[k]} = (H_{i})$	$(-1)^T O_1 H^{-1}$ // initialize covar.		43:	add $\langle x_{t}^{[k]}, N_{t}^{[k]}, \langle \mu_{1,t}^{[k]}, \Sigma_{1,t}^{[k]}, i_{1}^{[k]} \rangle$,	$\dots, \left\langle \mu_{N^{[k]}}^{[k]}, \Sigma_{N^{[k]}}^{[k]}, i_{N^{[k]}}^{[k]} \right\rangle \right\rangle$ to Y_t
20. $dest^{j} = \hat{c} \leq N_{j+1}^{(k)}$ then // is observed feature? 21. $K = \Sigma_{j+1}^{(k)} H_{j}^{2} G^{+}$ // calculate Kalman gain 22. $\mu_{j+1}^{(k)} = \mu_{j+1}^{(k)} + K(n_{j} - \hat{c}_{j})$ // update mean 23. $\Sigma_{j+1}^{(k)} = (I - K H) \Sigma_{j+1}^{(k)}$ // update covariance	19:	$i_{i}^{[k]} = 1$	// initialize counter		44:	enddo	
21: $K = \Sigma_{j,i}^{[k]} - H_{i}^{T} c_{i}^{-1}$ // calculate Kalman gain 22: $\mu_{j,i}^{[k]} = \mu_{j,i-1}^{[k]} + K(z_{i} - \hat{z}_{i})$ // update mean 23: $\Sigma_{j,i}^{[k]} = (I - KH_{j})\Sigma_{j,i-1}^{[k]}$ // update covariance	20:	else if $i = \hat{c} \leq N^{[k]}$, then	// is observed feature?	Similarity maximisation			
22. $\mu_{j,j}^{(k)} = \mu_{j,j-1}^{(k)} + K(z_i - \hat{z}_i)$ // update mean to existing features or 23. $\Sigma_{j,j}^{(k)} = (I - K_I)\Sigma_{j,j-1}^{(k)}$ // update covariance	21:	$K = \Sigma^{[k]} \cdot H^T O_*^{-1}$	// calculate Kalman gain	Similarity maximisation	45:	return Y_t	
$r_{j,k} = r_{j,k-1} + (n-k) \Sigma_{j,k-1}^{(k)}$ (<i>i</i>) update covariance	22:	$u^{[k]} = u^{[k]} + K(z_t - \hat{z}_t)$	// update mean	to existing features or			
	23	$\Sigma^{[k]} = (I - K H_i) \Sigma^{[k]}$	// update covariance	to shoting reatines of			
24 $i^{[k]} = i^{[k]} + 1$ // increment counter registering a new reature	24	$i^{[k]} = i^{[k]} + 1$	// increment counter	registering a new feature			
	2.4	-j,t -j,t-1 + x		551111111111111			

▶ A basic implementation of the algorithm is inefficient and has time complexity of O(MN) — this is because the procedure **performs inefficient updates on all features** — a more efficient implementation can make use of shared feature memory structures that reduce the time complexity

- ► A basic implementation of the algorithm is inefficient and has time complexity of O(MN) this is because the procedure performs inefficient updates on all features a more efficient implementation can make use of shared feature memory structures that reduce the time complexity
- FastSLAM discards features that are considered spurious, but this can introduce difficulties with loop closure if particles with (past) path segments that are responsible for those measurements are discarded in the resampling process

- ▶ A basic implementation of the algorithm is inefficient and has time complexity of O(MN) this is because the procedure **performs inefficient updates on all features** a more efficient implementation can make use of shared feature memory structures that reduce the time complexity
- FastSLAM discards features that are considered spurious, but this can introduce difficulties with loop closure if particles with (past) path segments that are responsible for those measurements are discarded in the resampling process
- In general and just as in the localisation case a diverse set of particles should be maintained to prevent too early convergence on an incorrect map estimate

FastSLAM with Occupancy Grids

- The FastSLAM algorithm can be used with occupancy grid maps as well unlike EKF SLAM, which would not be able to deal with the computational complexity of large grids
- In this case, instead of maintaining map features in the representation, each particle maintains an occupancy grid map
 - The map of each particle is then updated after performing a motion command and collecting an associated measurement
 - The weight of each particle is calculated based on the pose and measurement likelihood in the associated map
- The resulting algorithm is referred to as grid-based FastSLAM
 - ▶ The popular gmapping package in ROS is an implementation of this algorithm

Visual SLAM

While 2D occupancy grids are commonly used in robot applications, visual maps are conceptually desirable and interesting for robotics — visual data is a considerably richer information source than range sensors

C. Campos et al., "ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM," in *IEEE Transactions on Robotics*, vol. 37, no. 6, pp. 1874–1890, Dec. 2021.

- Visual SLAM is a family of techniques that use visual data (RGB or RGB-D images); many visual SLAM approaches exist in the literature^{1,2}
 - Visual information is often combined with inertial measurements for improved motion tracking; this is referred to as visual-inertial SLAM
- A large variety of feature descriptors are applied in visual SLAM, e.g. SIFT, SURF, or ORB; loop closure can be performed using place recognition, which can be done using a bag-of-visual-words

Note that EKF SLAM and FastSLAM are conceptually agnostic to the map / feature representation; thus, they can also be used in visual SLAM

I. A. Kazerouni et al., "A survey of state-of-the-art on visual SLAM," Expert Systems with Applications, vol. 205, Nov. 2022.
A. Macario Barros A et al., "A Comprehensive Survey of Visual SLAM Algorithms," Robotics, vol. 11, no. 1, Feb. 2022.

0

Summary

- Mapping is a process of creating an environment representation from sensor data, but the mapping process depends on accurate ground-truth localisation
- Occupancy grid mapping is a Bayesian filtering procedure that acquires an occupancy grid representation from range sensor measurements
- SLAM is a process of creating a map by also estimating a robot's pose; the problem is concerned with finding an estimate of the distribution of maps and a robot's pose (online SLAM) or a robot's path (full SLAM)
- ► There is a large variety of SLAM algorithms; mirroring our localisation discussion, we concretely looked at EKF SLAM, which is an algorithm based on extended Kalman filters, and FastSLAM, which uses a Rao-Blackwellised particle filter
- Visual SLAM uses data from cameras (exclusively or combined with other data sources) to create a visual 3D map
- ▶ Solving the feature correspondence problem is an essential component of all SLAM algorithms

