
Path Planning
How a Robot Finds Its Way Around

Dr. Alex Mitrevski
Master of Autonomous Systems



Structure

▶ Path planning preliminaries

▶ Path planning algorithms

▶ Local obstacle avoidance

Path Planning: How a Robot Finds Its Way Around 2 / 36



Path Planning Preliminaries

Path Planning: How a Robot Finds Its Way Around 3 / 36



What is Path Planning?

▶ Path planning is concerned with the problem of finding a
collision-free path P that brings a robot from a starting
pose Ps to a goal pose Pg

▶ Typically, P is defined as a sequence of poses
P = (Ps, P1, ..., Pn, Pg) through which the robot should pass

▶ There are two main questions that are of relevance for any
path planning algorithm:

1. How to generate P?

2. How to ensure that P does not bring a robot into
collisions?

▶ Note that path planning requires an environment map to
be given — obstacles need to be known so that collisions with
them can be avoided

Path Planning: How a Robot Finds Its Way Around 4 / 36



What is Path Planning?

▶ Path planning is concerned with the problem of finding a
collision-free path P that brings a robot from a starting
pose Ps to a goal pose Pg

▶ Typically, P is defined as a sequence of poses
P = (Ps, P1, ..., Pn, Pg) through which the robot should pass

▶ There are two main questions that are of relevance for any
path planning algorithm:

1. How to generate P?

2. How to ensure that P does not bring a robot into
collisions?

▶ Note that path planning requires an environment map to
be given — obstacles need to be known so that collisions with
them can be avoided

Path Planning: How a Robot Finds Its Way Around 4 / 36



What is Path Planning?

▶ Path planning is concerned with the problem of finding a
collision-free path P that brings a robot from a starting
pose Ps to a goal pose Pg

▶ Typically, P is defined as a sequence of poses
P = (Ps, P1, ..., Pn, Pg) through which the robot should pass

▶ There are two main questions that are of relevance for any
path planning algorithm:

1. How to generate P?

2. How to ensure that P does not bring a robot into
collisions?

▶ Note that path planning requires an environment map to
be given — obstacles need to be known so that collisions with
them can be avoided

Path Planning: How a Robot Finds Its Way Around 4 / 36



What is Path Planning?

▶ Path planning is concerned with the problem of finding a
collision-free path P that brings a robot from a starting
pose Ps to a goal pose Pg

▶ Typically, P is defined as a sequence of poses
P = (Ps, P1, ..., Pn, Pg) through which the robot should pass

▶ There are two main questions that are of relevance for any
path planning algorithm:

1. How to generate P?

2. How to ensure that P does not bring a robot into
collisions?

▶ Note that path planning requires an environment map to
be given — obstacles need to be known so that collisions with
them can be avoided

Path Planning: How a Robot Finds Its Way Around 4 / 36



What is Path Planning?

▶ Path planning is concerned with the problem of finding a
collision-free path P that brings a robot from a starting
pose Ps to a goal pose Pg

▶ Typically, P is defined as a sequence of poses
P = (Ps, P1, ..., Pn, Pg) through which the robot should pass

▶ There are two main questions that are of relevance for any
path planning algorithm:

1. How to generate P?

2. How to ensure that P does not bring a robot into
collisions?

▶ Note that path planning requires an environment map to
be given — obstacles need to be known so that collisions with
them can be avoided

Path Planning: How a Robot Finds Its Way Around 4 / 36



What is Path Planning?

▶ Path planning is concerned with the problem of finding a
collision-free path P that brings a robot from a starting
pose Ps to a goal pose Pg

▶ Typically, P is defined as a sequence of poses
P = (Ps, P1, ..., Pn, Pg) through which the robot should pass

▶ There are two main questions that are of relevance for any
path planning algorithm:

1. How to generate P?

2. How to ensure that P does not bring a robot into
collisions?

▶ Note that path planning requires an environment map to
be given — obstacles need to be known so that collisions with
them can be avoided

Path Planning: How a Robot Finds Its Way Around 4 / 36



Soundness and Completeness

Soundness
The property of a path planning algorithm to produce valid paths that start at Ps and end at Pg

▶ An essential property of path planning algorithms — an algorithm that is not sound cannot be
relied on by a robot

Completeness

A path planning algorithm is complete if, whenever a path from Ps to Pg exists, the algorithm will find it

▶ A desirable property of path planning algorithms that cannot always be guaranteed — due to
the complexity of a planning configuration, it may be impossible to find a path within a given
time or memory budget

Path Planning: How a Robot Finds Its Way Around 5 / 36



Soundness and Completeness

Soundness
The property of a path planning algorithm to produce valid paths that start at Ps and end at Pg

▶ An essential property of path planning algorithms — an algorithm that is not sound cannot be
relied on by a robot

Completeness

A path planning algorithm is complete if, whenever a path from Ps to Pg exists, the algorithm will find it

▶ A desirable property of path planning algorithms that cannot always be guaranteed — due to
the complexity of a planning configuration, it may be impossible to find a path within a given
time or memory budget

Path Planning: How a Robot Finds Its Way Around 5 / 36



Soundness and Completeness

Soundness
The property of a path planning algorithm to produce valid paths that start at Ps and end at Pg

▶ An essential property of path planning algorithms — an algorithm that is not sound cannot be
relied on by a robot

Completeness

A path planning algorithm is complete if, whenever a path from Ps to Pg exists, the algorithm will find it

▶ A desirable property of path planning algorithms that cannot always be guaranteed — due to
the complexity of a planning configuration, it may be impossible to find a path within a given
time or memory budget

Path Planning: How a Robot Finds Its Way Around 5 / 36



Soundness and Completeness

Soundness
The property of a path planning algorithm to produce valid paths that start at Ps and end at Pg

▶ An essential property of path planning algorithms — an algorithm that is not sound cannot be
relied on by a robot

Completeness

A path planning algorithm is complete if, whenever a path from Ps to Pg exists, the algorithm will find it

▶ A desirable property of path planning algorithms that cannot always be guaranteed — due to
the complexity of a planning configuration, it may be impossible to find a path within a given
time or memory budget

Path Planning: How a Robot Finds Its Way Around 5 / 36



Configuration Space
▶ Path planning needs to take into account the fact that a robot is

not a point in space, but a full body

▶ Achieved by planning not in the robot’s physical space, but
in configuration space, where each configuration is a point

▶ The configuration space C (aka C-space) is a space of all
configurations q that a robot can occupy

▶ For a planar navigating robot, the configuration space can
be defined by planar poses q = (x, y, θ)

▶ If O ⊂ W is a workspace region occupied by an obstacle and
A(q) ⊂ W is the set of workspace points occupied by a robot in
q, the occupied region in C-space is

Cobs = {q ∈ C | A(q) ∩ O ̸= ∅}

▶ Obstacles are typically enlarged in the C-space, and a valid
path is one that passes only through the free space
Cfree = C \ Cobs

Path Planning: How a Robot Finds Its Way Around 6 / 36



Configuration Space
▶ Path planning needs to take into account the fact that a robot is

not a point in space, but a full body

▶ Achieved by planning not in the robot’s physical space, but
in configuration space, where each configuration is a point

▶ The configuration space C (aka C-space) is a space of all
configurations q that a robot can occupy

▶ For a planar navigating robot, the configuration space can
be defined by planar poses q = (x, y, θ)

▶ If O ⊂ W is a workspace region occupied by an obstacle and
A(q) ⊂ W is the set of workspace points occupied by a robot in
q, the occupied region in C-space is

Cobs = {q ∈ C | A(q) ∩ O ̸= ∅}

▶ Obstacles are typically enlarged in the C-space, and a valid
path is one that passes only through the free space
Cfree = C \ Cobs

Path Planning: How a Robot Finds Its Way Around 6 / 36



Configuration Space
▶ Path planning needs to take into account the fact that a robot is

not a point in space, but a full body

▶ Achieved by planning not in the robot’s physical space, but
in configuration space, where each configuration is a point

▶ The configuration space C (aka C-space) is a space of all
configurations q that a robot can occupy

▶ For a planar navigating robot, the configuration space can
be defined by planar poses q = (x, y, θ)

▶ If O ⊂ W is a workspace region occupied by an obstacle and
A(q) ⊂ W is the set of workspace points occupied by a robot in
q, the occupied region in C-space is

Cobs = {q ∈ C | A(q) ∩ O ̸= ∅}

▶ Obstacles are typically enlarged in the C-space, and a valid
path is one that passes only through the free space
Cfree = C \ Cobs

Path Planning: How a Robot Finds Its Way Around 6 / 36



Configuration Space
▶ Path planning needs to take into account the fact that a robot is

not a point in space, but a full body

▶ Achieved by planning not in the robot’s physical space, but
in configuration space, where each configuration is a point

▶ The configuration space C (aka C-space) is a space of all
configurations q that a robot can occupy

▶ For a planar navigating robot, the configuration space can
be defined by planar poses q = (x, y, θ)

▶ If O ⊂ W is a workspace region occupied by an obstacle and
A(q) ⊂ W is the set of workspace points occupied by a robot in
q, the occupied region in C-space is

Cobs = {q ∈ C | A(q) ∩ O ̸= ∅}

▶ Obstacles are typically enlarged in the C-space, and a valid
path is one that passes only through the free space
Cfree = C \ Cobs

Path Planning: How a Robot Finds Its Way Around 6 / 36



Path Planning Algorithms

Path Planning: How a Robot Finds Its Way Around 7 / 36



Path Planning Methods

Methods

...

Graph-based
planning

Potential field-based
planning

Path Planning: How a Robot Finds Its Way Around 8 / 36



Graph Search

▶ The most common strategy for path planning is to perform a
path search from Ps to Pg on a graph G

▶ To use classical graph search for path planning, space has to
be decomposed into a set of connected regions

▶ The regions are the nodes in G and the connections between
them are the edges

▶ The decompositions that we looked at in the last lecture (e.g.
the exact cell decomposition) can be used as precursors to
path planning using graph search

Path Planning: How a Robot Finds Its Way Around 9 / 36



Graph Search

▶ The most common strategy for path planning is to perform a
path search from Ps to Pg on a graph G

▶ To use classical graph search for path planning, space has to
be decomposed into a set of connected regions

▶ The regions are the nodes in G and the connections between
them are the edges

▶ The decompositions that we looked at in the last lecture (e.g.
the exact cell decomposition) can be used as precursors to
path planning using graph search

Path Planning: How a Robot Finds Its Way Around 9 / 36



Graph Search

▶ The most common strategy for path planning is to perform a
path search from Ps to Pg on a graph G

▶ To use classical graph search for path planning, space has to
be decomposed into a set of connected regions

▶ The regions are the nodes in G and the connections between
them are the edges

▶ The decompositions that we looked at in the last lecture (e.g.
the exact cell decomposition) can be used as precursors to
path planning using graph search

Path Planning: How a Robot Finds Its Way Around 9 / 36



Graph Search Algorithms

▶ A variety of search algorithms can be used given a graph

Depth-first search

Children nodes are expanded until a leaf node is
reached; the search then backtracks one level and
continues on

Breadth-first search
All nodes at a given level of the search graph are
expanded before expanding the nodes at the next
level

Djikstra’s algorithm

An optimal search algorithm that selects nodes
to expand based on the cost g(n) of reaching n
from the start node of the search

A* algorithm

Selects nodes to expand based on a cost
f(n) = g(n) + h(n), where h(n) is a heuristic
estimate of the cost to reach the goal; optimal if
h(n) is admissible and consistent

▶ These algorithms are called deterministic search algorithm

▶ More details about them are discussed in the AI course

Path Planning: How a Robot Finds Its Way Around 10 / 36



Graph Search Algorithms

▶ A variety of search algorithms can be used given a graph

Depth-first search

Children nodes are expanded until a leaf node is
reached; the search then backtracks one level and
continues on

Breadth-first search
All nodes at a given level of the search graph are
expanded before expanding the nodes at the next
level

Djikstra’s algorithm

An optimal search algorithm that selects nodes
to expand based on the cost g(n) of reaching n
from the start node of the search

A* algorithm

Selects nodes to expand based on a cost
f(n) = g(n) + h(n), where h(n) is a heuristic
estimate of the cost to reach the goal; optimal if
h(n) is admissible and consistent

▶ These algorithms are called deterministic search algorithm

▶ More details about them are discussed in the AI course

Path Planning: How a Robot Finds Its Way Around 10 / 36



Graph Search Algorithms

▶ A variety of search algorithms can be used given a graph

Depth-first search

Children nodes are expanded until a leaf node is
reached; the search then backtracks one level and
continues on

Breadth-first search
All nodes at a given level of the search graph are
expanded before expanding the nodes at the next
level

Djikstra’s algorithm

An optimal search algorithm that selects nodes
to expand based on the cost g(n) of reaching n
from the start node of the search

A* algorithm

Selects nodes to expand based on a cost
f(n) = g(n) + h(n), where h(n) is a heuristic
estimate of the cost to reach the goal; optimal if
h(n) is admissible and consistent

▶ These algorithms are called deterministic search algorithm

▶ More details about them are discussed in the AI course

Path Planning: How a Robot Finds Its Way Around 10 / 36



Graph Search Algorithms

▶ A variety of search algorithms can be used given a graph

Depth-first search

Children nodes are expanded until a leaf node is
reached; the search then backtracks one level and
continues on

Breadth-first search
All nodes at a given level of the search graph are
expanded before expanding the nodes at the next
level

Djikstra’s algorithm

An optimal search algorithm that selects nodes
to expand based on the cost g(n) of reaching n
from the start node of the search

A* algorithm

Selects nodes to expand based on a cost
f(n) = g(n) + h(n), where h(n) is a heuristic
estimate of the cost to reach the goal; optimal if
h(n) is admissible and consistent

▶ These algorithms are called deterministic search algorithm

▶ More details about them are discussed in the AI course

Path Planning: How a Robot Finds Its Way Around 10 / 36



Graph Search Algorithms

▶ A variety of search algorithms can be used given a graph

Depth-first search

Children nodes are expanded until a leaf node is
reached; the search then backtracks one level and
continues on

Breadth-first search
All nodes at a given level of the search graph are
expanded before expanding the nodes at the next
level

Djikstra’s algorithm

An optimal search algorithm that selects nodes
to expand based on the cost g(n) of reaching n
from the start node of the search

A* algorithm

Selects nodes to expand based on a cost
f(n) = g(n) + h(n), where h(n) is a heuristic
estimate of the cost to reach the goal; optimal if
h(n) is admissible and consistent

▶ These algorithms are called deterministic search algorithm

▶ More details about them are discussed in the AI course

Path Planning: How a Robot Finds Its Way Around 10 / 36



Graph Search Algorithms

▶ A variety of search algorithms can be used given a graph

Depth-first search

Children nodes are expanded until a leaf node is
reached; the search then backtracks one level and
continues on

Breadth-first search
All nodes at a given level of the search graph are
expanded before expanding the nodes at the next
level

Djikstra’s algorithm

An optimal search algorithm that selects nodes
to expand based on the cost g(n) of reaching n
from the start node of the search

A* algorithm

Selects nodes to expand based on a cost
f(n) = g(n) + h(n), where h(n) is a heuristic
estimate of the cost to reach the goal; optimal if
h(n) is admissible and consistent

▶ These algorithms are called deterministic search algorithm

▶ More details about them are discussed in the AI course

Path Planning: How a Robot Finds Its Way Around 10 / 36



Wavefront Algorithm

▶ The wavefront algorithm is a breadth-first search method that
works in occupancy grids

▶ The algorithm starts the search process from the goal and
stops when a robot’s initial position is reached

▶ An important outcome of the wavefront algorithm is an
estimate of the distance from any expanded node to the
goal (represented as a Manhattan distance)

Path Planning: How a Robot Finds Its Way Around 11 / 36



Wavefront Algorithm

▶ The wavefront algorithm is a breadth-first search method that
works in occupancy grids

▶ The algorithm starts the search process from the goal and
stops when a robot’s initial position is reached

▶ An important outcome of the wavefront algorithm is an
estimate of the distance from any expanded node to the
goal (represented as a Manhattan distance)

Path Planning: How a Robot Finds Its Way Around 11 / 36



Wavefront Algorithm

▶ The wavefront algorithm is a breadth-first search method that
works in occupancy grids

▶ The algorithm starts the search process from the goal and
stops when a robot’s initial position is reached

▶ An important outcome of the wavefront algorithm is an
estimate of the distance from any expanded node to the
goal (represented as a Manhattan distance)

Path Planning: How a Robot Finds Its Way Around 11 / 36



Rapidly Exploring Random Trees (RRTs)

▶ Many robot planning tasks, particularly in high dimensions, are done using randomised search

▶ Deterministic search tends to be inefficient — particularly under real-time constraints — and defining
useful heuristics is often difficult

▶ RRT is one such algorithm that, at each step, randomly select a
free space node q′ and connects that to already an existing graph
segment if the connection leads to a collision-free path

▶ If there is a path from Ps to Pg, graph segments are likely to be
connected eventually

▶ RRT is a probabilistically complete algorithm and is not
optimal, but is fast and thus usually useful for practical purposes

▶ The search typically needs to be repeated multiple times for a
solution to be found

▶ As in some deterministic search algorithms, the search process can be performed
bidirectionally (starting from both Ps and from Pg) to increase the likelihood of finding a path

Path Planning: How a Robot Finds Its Way Around 12 / 36



Rapidly Exploring Random Trees (RRTs)

▶ Many robot planning tasks, particularly in high dimensions, are done using randomised search

▶ Deterministic search tends to be inefficient — particularly under real-time constraints — and defining
useful heuristics is often difficult

▶ RRT is one such algorithm that, at each step, randomly select a
free space node q′ and connects that to already an existing graph
segment if the connection leads to a collision-free path

▶ If there is a path from Ps to Pg, graph segments are likely to be
connected eventually

▶ RRT is a probabilistically complete algorithm and is not
optimal, but is fast and thus usually useful for practical purposes

▶ The search typically needs to be repeated multiple times for a
solution to be found

▶ As in some deterministic search algorithms, the search process can be performed
bidirectionally (starting from both Ps and from Pg) to increase the likelihood of finding a path

Path Planning: How a Robot Finds Its Way Around 12 / 36



Rapidly Exploring Random Trees (RRTs)

▶ Many robot planning tasks, particularly in high dimensions, are done using randomised search

▶ Deterministic search tends to be inefficient — particularly under real-time constraints — and defining
useful heuristics is often difficult

▶ RRT is one such algorithm that, at each step, randomly select a
free space node q′ and connects that to already an existing graph
segment if the connection leads to a collision-free path

▶ If there is a path from Ps to Pg, graph segments are likely to be
connected eventually

▶ RRT is a probabilistically complete algorithm and is not
optimal, but is fast and thus usually useful for practical purposes

▶ The search typically needs to be repeated multiple times for a
solution to be found

▶ As in some deterministic search algorithms, the search process can be performed
bidirectionally (starting from both Ps and from Pg) to increase the likelihood of finding a path

Path Planning: How a Robot Finds Its Way Around 12 / 36



Rapidly Exploring Random Trees (RRTs)

▶ Many robot planning tasks, particularly in high dimensions, are done using randomised search

▶ Deterministic search tends to be inefficient — particularly under real-time constraints — and defining
useful heuristics is often difficult

▶ RRT is one such algorithm that, at each step, randomly select a
free space node q′ and connects that to already an existing graph
segment if the connection leads to a collision-free path

▶ If there is a path from Ps to Pg, graph segments are likely to be
connected eventually

▶ RRT is a probabilistically complete algorithm and is not
optimal, but is fast and thus usually useful for practical purposes

▶ The search typically needs to be repeated multiple times for a
solution to be found

▶ As in some deterministic search algorithms, the search process can be performed
bidirectionally (starting from both Ps and from Pg) to increase the likelihood of finding a path

Path Planning: How a Robot Finds Its Way Around 12 / 36



Path Planning Methods

Methods

...

Graph-based
planning

Potential field-based
planning

Path Planning: How a Robot Finds Its Way Around 13 / 36



Potential Fields

▶ Potential field planning is an alternative planning
strategy based on which the robot is treated as being
under the influence of a potential field U(q)

▶ U(q) is created as a combination of attractive and
repulsive potentials: U(q) = Uattr(q) + Urep(q)

▶ A goal configuration has an attractive potential

▶ Obstacles have repulsive potentials

▶ Recall that a potential is associated with a conservative
force, which is expressed as

F (q) = −∇U(q)

▶ This means that, at every point q, a robot is subject to
F (q), which dictates the direction in which the robot
should move

Path Planning: How a Robot Finds Its Way Around 14 / 36



Potential Fields

▶ Potential field planning is an alternative planning
strategy based on which the robot is treated as being
under the influence of a potential field U(q)

▶ U(q) is created as a combination of attractive and
repulsive potentials: U(q) = Uattr(q) + Urep(q)

▶ A goal configuration has an attractive potential

▶ Obstacles have repulsive potentials

▶ Recall that a potential is associated with a conservative
force, which is expressed as

F (q) = −∇U(q)

▶ This means that, at every point q, a robot is subject to
F (q), which dictates the direction in which the robot
should move

Path Planning: How a Robot Finds Its Way Around 14 / 36



Potential Fields

▶ Potential field planning is an alternative planning
strategy based on which the robot is treated as being
under the influence of a potential field U(q)

▶ U(q) is created as a combination of attractive and
repulsive potentials: U(q) = Uattr(q) + Urep(q)

▶ A goal configuration has an attractive potential

▶ Obstacles have repulsive potentials

▶ Recall that a potential is associated with a conservative
force, which is expressed as

F (q) = −∇U(q)

▶ This means that, at every point q, a robot is subject to
F (q), which dictates the direction in which the robot
should move

Path Planning: How a Robot Finds Its Way Around 14 / 36



Potential Fields

▶ Potential field planning is an alternative planning
strategy based on which the robot is treated as being
under the influence of a potential field U(q)

▶ U(q) is created as a combination of attractive and
repulsive potentials: U(q) = Uattr(q) + Urep(q)

▶ A goal configuration has an attractive potential

▶ Obstacles have repulsive potentials

▶ Recall that a potential is associated with a conservative
force, which is expressed as

F (q) = −∇U(q)

▶ This means that, at every point q, a robot is subject to
F (q), which dictates the direction in which the robot
should move

Path Planning: How a Robot Finds Its Way Around 14 / 36



Attractive Potential

▶ An attractive potential should guide a robot towards a given configuration

▶ Attractive potentials are typically used only for goal configurations; such a potential can be
expressed as a function of the distance to the goal

▶ Let ∥q − qgoal∥ be the Euclidean distance between the current configuration and the goal
configuration, and ka be a positive constant; an example of an attractive potential would then be

Uattr(q) =
1

2
ka∥q − qgoal∥2

▶ The associated force field is then

Fattr(q) = −∇Uattr(q) = −ka(q − qgoal)

Path Planning: How a Robot Finds Its Way Around 15 / 36



Repulsive Potential

▶ A repulsive potential should repel a robot from a given configuration

▶ Repulsive potentials are typically used for avoiding obstacles, such that they can be expressed as a
function of the distance to obstacles — each obstacle would have its own repulsive potential

▶ Repulsive fields are typically active only within a given region — faraway obstacles should not
affect the motion of a robot

▶ Let ∥q − qo∥ be the minimum distance between q and any point of an obstacle, ρ0 be a distance
threshold, and kr a positive constant; an example of a repulsive field is then

Urep(q) =

{
1
2kr

(
1

∥q−qo∥ − 1
ρ0

)2

∥q − qo∥ ≤ ρ0

0 ∥q − qo∥ > ρ0

▶ The associated force field is given as

Frep(q) =

{
kr

(
1

∥q−qo∥ − 1
ρ0

)
1

∥q−qo∥2
q−qo

∥q−qo∥ ∥q − qo∥ ≤ ρ0

0 ∥q − qo∥ > ρ0

Path Planning: How a Robot Finds Its Way Around 16 / 36



Potential Fields and Local Minima

▶ Given the interplay between attractive and repulsive potentials,
it can happen that the resulting force at a given point adds to
0 — a robot gets stuck at a local minimum in such a case

▶ Thus, on their own, a potential field is not a complete
path planner

▶ One strategy to escape local minima is to employ random
walks — this turns a potential field into a randomised planner

Path Planning: How a Robot Finds Its Way Around 17 / 36



Potential Fields and Local Minima

▶ Given the interplay between attractive and repulsive potentials,
it can happen that the resulting force at a given point adds to
0 — a robot gets stuck at a local minimum in such a case

▶ Thus, on their own, a potential field is not a complete
path planner

▶ One strategy to escape local minima is to employ random
walks — this turns a potential field into a randomised planner

Path Planning: How a Robot Finds Its Way Around 17 / 36



Potential Fields and Local Minima

▶ Given the interplay between attractive and repulsive potentials,
it can happen that the resulting force at a given point adds to
0 — a robot gets stuck at a local minimum in such a case

▶ Thus, on their own, a potential field is not a complete
path planner

▶ One strategy to escape local minima is to employ random
walks — this turns a potential field into a randomised planner

Path Planning: How a Robot Finds Its Way Around 17 / 36



Path Planning Methods

Methods

...

Graph-based
planning

Potential field-based
planning

Path Planning: How a Robot Finds Its Way Around 18 / 36



Local Obstacle Avoidance

Path Planning: How a Robot Finds Its Way Around 19 / 36



Local Obstacle Avoidance for Unknown Obstacles

▶ Path planning can generate collision-free paths for known
obstacles in the map, but a robot should also have an
ability to handle unknown and dynamic obstacles

▶ Very few environments are completely static — most are
dynamic at least to some extent

▶ Local obstacle avoidance needs to take the current sensor
measurements into account so that appropriate avoidance
maneuvers can be performed

▶ Traditional obstacle avoidance strategies are defined for static
obstacles — dynamic obstacles (such as people) pose a
different level of challenge and are most effective in
conjunction with an obstacle motion model

Path Planning: How a Robot Finds Its Way Around 20 / 36



Local Obstacle Avoidance for Unknown Obstacles

▶ Path planning can generate collision-free paths for known
obstacles in the map, but a robot should also have an
ability to handle unknown and dynamic obstacles

▶ Very few environments are completely static — most are
dynamic at least to some extent

▶ Local obstacle avoidance needs to take the current sensor
measurements into account so that appropriate avoidance
maneuvers can be performed

▶ Traditional obstacle avoidance strategies are defined for static
obstacles — dynamic obstacles (such as people) pose a
different level of challenge and are most effective in
conjunction with an obstacle motion model

Path Planning: How a Robot Finds Its Way Around 20 / 36



Local Obstacle Avoidance for Unknown Obstacles

▶ Path planning can generate collision-free paths for known
obstacles in the map, but a robot should also have an
ability to handle unknown and dynamic obstacles

▶ Very few environments are completely static — most are
dynamic at least to some extent

▶ Local obstacle avoidance needs to take the current sensor
measurements into account so that appropriate avoidance
maneuvers can be performed

▶ Traditional obstacle avoidance strategies are defined for static
obstacles — dynamic obstacles (such as people) pose a
different level of challenge and are most effective in
conjunction with an obstacle motion model

Path Planning: How a Robot Finds Its Way Around 20 / 36



Obstacle Avoidance Techniques

There is a large variety of obstacle avoidance techniques in the literature; we will take a closer look at
some of them on the following slides

Bug
algorithm(s)

Vector Field
Histogram (VFH)

Bubble band
method

Obstacle avoidance
techniques

Dynamic window
approach (DWA)

Learning-based
obstacle avoidance

Path Planning: How a Robot Finds Its Way Around 21 / 36



Bug1 Algorithm

▶ The Bug1 algorithm is perhaps the simplest obstacle avoidance
strategy

▶ The algorithm performs two steps:

1. Circle around the obstacle (e.g. using wall following) to find
the point that is closest to the goal and come back to the
original obstacle approach point

2. Follow the obstacle contour to the point closest to the goal
and then leave the obstacle to move towards the goal

▶ Bug1 is a naive and inefficient obstacle avoidance
strategy, as the full obstacle contour needs to be traversed so
that a departure point is identified

Path Planning: How a Robot Finds Its Way Around 22 / 36



Bug1 Algorithm

▶ The Bug1 algorithm is perhaps the simplest obstacle avoidance
strategy

▶ The algorithm performs two steps:

1. Circle around the obstacle (e.g. using wall following) to find
the point that is closest to the goal and come back to the
original obstacle approach point

2. Follow the obstacle contour to the point closest to the goal
and then leave the obstacle to move towards the goal

▶ Bug1 is a naive and inefficient obstacle avoidance
strategy, as the full obstacle contour needs to be traversed so
that a departure point is identified

Path Planning: How a Robot Finds Its Way Around 22 / 36



Bug1 Algorithm

▶ The Bug1 algorithm is perhaps the simplest obstacle avoidance
strategy

▶ The algorithm performs two steps:

1. Circle around the obstacle (e.g. using wall following) to find
the point that is closest to the goal and come back to the
original obstacle approach point

2. Follow the obstacle contour to the point closest to the goal
and then leave the obstacle to move towards the goal

▶ Bug1 is a naive and inefficient obstacle avoidance
strategy, as the full obstacle contour needs to be traversed so
that a departure point is identified

Path Planning: How a Robot Finds Its Way Around 22 / 36



Bug1 Algorithm

▶ The Bug1 algorithm is perhaps the simplest obstacle avoidance
strategy

▶ The algorithm performs two steps:

1. Circle around the obstacle (e.g. using wall following) to find
the point that is closest to the goal and come back to the
original obstacle approach point

2. Follow the obstacle contour to the point closest to the goal
and then leave the obstacle to move towards the goal

▶ Bug1 is a naive and inefficient obstacle avoidance
strategy, as the full obstacle contour needs to be traversed so
that a departure point is identified

Path Planning: How a Robot Finds Its Way Around 22 / 36



Bug1 Algorithm

▶ The Bug1 algorithm is perhaps the simplest obstacle avoidance
strategy

▶ The algorithm performs two steps:

1. Circle around the obstacle (e.g. using wall following) to find
the point that is closest to the goal and come back to the
original obstacle approach point

2. Follow the obstacle contour to the point closest to the goal
and then leave the obstacle to move towards the goal

▶ Bug1 is a naive and inefficient obstacle avoidance
strategy, as the full obstacle contour needs to be traversed so
that a departure point is identified

Path Planning: How a Robot Finds Its Way Around 22 / 36



Bug2

▶ Bug2 constitutes a more efficient version of Bug1

▶ The idea behind Bug2 is to follow the obstacle’s contour
until reaching a point from which there is a direct path
to the goal; at this point, the robot leaves the obstacle and
starts moving towards the goal

▶ Some non-convex obstacle shapes may lead to a suboptimal or
oscillatory behaviour of the bug algorithms

Path Planning: How a Robot Finds Its Way Around 23 / 36



Bug2

▶ Bug2 constitutes a more efficient version of Bug1

▶ The idea behind Bug2 is to follow the obstacle’s contour
until reaching a point from which there is a direct path
to the goal; at this point, the robot leaves the obstacle and
starts moving towards the goal

▶ Some non-convex obstacle shapes may lead to a suboptimal or
oscillatory behaviour of the bug algorithms

Path Planning: How a Robot Finds Its Way Around 23 / 36



Bug2

▶ Bug2 constitutes a more efficient version of Bug1

▶ The idea behind Bug2 is to follow the obstacle’s contour
until reaching a point from which there is a direct path
to the goal; at this point, the robot leaves the obstacle and
starts moving towards the goal

▶ Some non-convex obstacle shapes may lead to a suboptimal or
oscillatory behaviour of the bug algorithms

Path Planning: How a Robot Finds Its Way Around 23 / 36



Obstacle Avoidance Techniques

Bug
algorithm(s)

Vector Field
Histogram (VFH)

Bubble band
method

Obstacle avoidance
techniques

Dynamic window
approach (DWA)

Learning-based
obstacle avoidance

Path Planning: How a Robot Finds Its Way Around 24 / 36



Vector Field Histogram (VFH)

▶ A vector field histogram is an obstacle avoidance method that uses a local map based on recent sensor
measurements

▶ The method creates a discrete histogram that encodes the
probability that there is an obstacle at a given direction from
the robot

▶ Given the histogram, candidate passages that would fit the robot
are found, and a direction of motion is identified based on a cost
function of the form:

J = w1h+ w2γ + w3∆h

▶ Here w1,2,3 are positive constants, h is the orientation towards the
goal, γ is the change in wheel orientation that would be necessary
to move in the candidate orientation, and ∆h is the necessary
orientation change to achieve h

▶ An extended VFH method assumes motion along straight lines and arcs, and creates a masked
histogram that prevents motion directions that would pass through the obstacles

Path Planning: How a Robot Finds Its Way Around 25 / 36



Vector Field Histogram (VFH)

▶ A vector field histogram is an obstacle avoidance method that uses a local map based on recent sensor
measurements

▶ The method creates a discrete histogram that encodes the
probability that there is an obstacle at a given direction from
the robot

▶ Given the histogram, candidate passages that would fit the robot
are found, and a direction of motion is identified based on a cost
function of the form:

J = w1h+ w2γ + w3∆h

▶ Here w1,2,3 are positive constants, h is the orientation towards the
goal, γ is the change in wheel orientation that would be necessary
to move in the candidate orientation, and ∆h is the necessary
orientation change to achieve h

▶ An extended VFH method assumes motion along straight lines and arcs, and creates a masked
histogram that prevents motion directions that would pass through the obstacles

Path Planning: How a Robot Finds Its Way Around 25 / 36



Vector Field Histogram (VFH)

▶ A vector field histogram is an obstacle avoidance method that uses a local map based on recent sensor
measurements

▶ The method creates a discrete histogram that encodes the
probability that there is an obstacle at a given direction from
the robot

▶ Given the histogram, candidate passages that would fit the robot
are found, and a direction of motion is identified based on a cost
function of the form:

J = w1h+ w2γ + w3∆h

▶ Here w1,2,3 are positive constants, h is the orientation towards the
goal, γ is the change in wheel orientation that would be necessary
to move in the candidate orientation, and ∆h is the necessary
orientation change to achieve h

▶ An extended VFH method assumes motion along straight lines and arcs, and creates a masked
histogram that prevents motion directions that would pass through the obstacles

Path Planning: How a Robot Finds Its Way Around 25 / 36



Vector Field Histogram (VFH)

▶ A vector field histogram is an obstacle avoidance method that uses a local map based on recent sensor
measurements

▶ The method creates a discrete histogram that encodes the
probability that there is an obstacle at a given direction from
the robot

▶ Given the histogram, candidate passages that would fit the robot
are found, and a direction of motion is identified based on a cost
function of the form:

J = w1h+ w2γ + w3∆h

▶ Here w1,2,3 are positive constants, h is the orientation towards the
goal, γ is the change in wheel orientation that would be necessary
to move in the candidate orientation, and ∆h is the necessary
orientation change to achieve h

▶ An extended VFH method assumes motion along straight lines and arcs, and creates a masked
histogram that prevents motion directions that would pass through the obstacles

Path Planning: How a Robot Finds Its Way Around 25 / 36



Obstacle Avoidance Techniques

Bug
algorithm(s)

Vector Field
Histogram (VFH)

Bubble band
method

Obstacle avoidance
techniques

Dynamic window
approach (DWA)

Learning-based
obstacle avoidance

Path Planning: How a Robot Finds Its Way Around 26 / 36



Bubble Band Method

▶ The bubble band method models the robot as a bubble,
where a bubble is the maximum reachable space without
collisions around a configuration q

▶ A bubble band can be used to pre-plan a full trajectory, which
consists of a sequence of overlapping bubbles

▶ During online execution:

▶ internal forces are used for online energy minimisation (so
that a smooth trajectory is achieved)

▶ obstacles apply external repulsive forces to the bubbles

▶ The bubble band method is thus a path and motion
planning method

Path Planning: How a Robot Finds Its Way Around 27 / 36



Bubble Band Method

▶ The bubble band method models the robot as a bubble,
where a bubble is the maximum reachable space without
collisions around a configuration q

▶ A bubble band can be used to pre-plan a full trajectory, which
consists of a sequence of overlapping bubbles

▶ During online execution:

▶ internal forces are used for online energy minimisation (so
that a smooth trajectory is achieved)

▶ obstacles apply external repulsive forces to the bubbles

▶ The bubble band method is thus a path and motion
planning method

Path Planning: How a Robot Finds Its Way Around 27 / 36



Bubble Band Method

▶ The bubble band method models the robot as a bubble,
where a bubble is the maximum reachable space without
collisions around a configuration q

▶ A bubble band can be used to pre-plan a full trajectory, which
consists of a sequence of overlapping bubbles

▶ During online execution:

▶ internal forces are used for online energy minimisation (so
that a smooth trajectory is achieved)

▶ obstacles apply external repulsive forces to the bubbles

▶ The bubble band method is thus a path and motion
planning method

Path Planning: How a Robot Finds Its Way Around 27 / 36



Bubble Band Method

▶ The bubble band method models the robot as a bubble,
where a bubble is the maximum reachable space without
collisions around a configuration q

▶ A bubble band can be used to pre-plan a full trajectory, which
consists of a sequence of overlapping bubbles

▶ During online execution:

▶ internal forces are used for online energy minimisation (so
that a smooth trajectory is achieved)

▶ obstacles apply external repulsive forces to the bubbles

▶ The bubble band method is thus a path and motion
planning method

Path Planning: How a Robot Finds Its Way Around 27 / 36



Obstacle Avoidance Techniques

Bug
algorithm(s)

Vector Field
Histogram (VFH)

Bubble band
method

Obstacle avoidance
techniques

Dynamic window
approach (DWA)

Learning-based
obstacle avoidance

Path Planning: How a Robot Finds Its Way Around 28 / 36



Dynamic Window Approach (DWA)

▶ The dynamic window approach enables obstacle avoidance by
considering kinematic constraints

▶ There are multiple variations of the technique, but they can
roughly be divided into:

▶ Local DWA, which only considers local obstacle information

▶ Global DWA, which also includes global environment
information in its planning process

▶ DWA in not just a method for path planning, but also for
motion planning

▶ Prediction of the effects of the robot’s motion — based on a
motion model — are thus done by the algorithm

Path Planning: How a Robot Finds Its Way Around 29 / 36



Dynamic Window Approach (DWA)

▶ The dynamic window approach enables obstacle avoidance by
considering kinematic constraints

▶ There are multiple variations of the technique, but they can
roughly be divided into:

▶ Local DWA, which only considers local obstacle information

▶ Global DWA, which also includes global environment
information in its planning process

▶ DWA in not just a method for path planning, but also for
motion planning

▶ Prediction of the effects of the robot’s motion — based on a
motion model — are thus done by the algorithm

Path Planning: How a Robot Finds Its Way Around 29 / 36



Dynamic Window Approach (DWA)

▶ The dynamic window approach enables obstacle avoidance by
considering kinematic constraints

▶ There are multiple variations of the technique, but they can
roughly be divided into:

▶ Local DWA, which only considers local obstacle information

▶ Global DWA, which also includes global environment
information in its planning process

▶ DWA in not just a method for path planning, but also for
motion planning

▶ Prediction of the effects of the robot’s motion — based on a
motion model — are thus done by the algorithm

Path Planning: How a Robot Finds Its Way Around 29 / 36



Local Dynamic Window Approach

▶ The local DWA assumes circular motion with linear velocity v and angular velocity ω, such that it
tries to find instantaneous velocities that would bring the robot closer to the goal without
causing an obstacle collision

▶ The approach performs two steps at every iteration (i.e. at every step of the control algorithm):

1. Finding a dynamic window of feasible velocities that a robot can reach within the next control step

2. Reducing the dynamic window by only considering admissible velocities, namely those that guarantee
that no obstacle collision will occur

▶ From the admissible set, v and ω are chosen so that they keep the robot as away from
obstacles, are as aligned with the goal, and are as fast as possible

▶ This is achieved using an objective function of the form

J(v, ω) = w1h(v, ω) + w2s(v, ω) + w3d(v, ω)

where w1,2,3 are positive constants, h is the heading, s the speed, and d the closest distance to an
obstacle

Path Planning: How a Robot Finds Its Way Around 30 / 36



Local Dynamic Window Approach

▶ The local DWA assumes circular motion with linear velocity v and angular velocity ω, such that it
tries to find instantaneous velocities that would bring the robot closer to the goal without
causing an obstacle collision

▶ The approach performs two steps at every iteration (i.e. at every step of the control algorithm):

1. Finding a dynamic window of feasible velocities that a robot can reach within the next control step

2. Reducing the dynamic window by only considering admissible velocities, namely those that guarantee
that no obstacle collision will occur

▶ From the admissible set, v and ω are chosen so that they keep the robot as away from
obstacles, are as aligned with the goal, and are as fast as possible

▶ This is achieved using an objective function of the form

J(v, ω) = w1h(v, ω) + w2s(v, ω) + w3d(v, ω)

where w1,2,3 are positive constants, h is the heading, s the speed, and d the closest distance to an
obstacle

Path Planning: How a Robot Finds Its Way Around 30 / 36



Local Dynamic Window Approach

▶ The local DWA assumes circular motion with linear velocity v and angular velocity ω, such that it
tries to find instantaneous velocities that would bring the robot closer to the goal without
causing an obstacle collision

▶ The approach performs two steps at every iteration (i.e. at every step of the control algorithm):

1. Finding a dynamic window of feasible velocities that a robot can reach within the next control step

2. Reducing the dynamic window by only considering admissible velocities, namely those that guarantee
that no obstacle collision will occur

▶ From the admissible set, v and ω are chosen so that they keep the robot as away from
obstacles, are as aligned with the goal, and are as fast as possible

▶ This is achieved using an objective function of the form

J(v, ω) = w1h(v, ω) + w2s(v, ω) + w3d(v, ω)

where w1,2,3 are positive constants, h is the heading, s the speed, and d the closest distance to an
obstacle

Path Planning: How a Robot Finds Its Way Around 30 / 36



Global Dynamic Window Approach

▶ The global DWA is an extension of the local DWA approach that additionally considers global
environment information

▶ This is particularly done by maintaining a local occupancy grid and recalculating the distance
to the goal using the wavefront algorithm

▶ The size of the region covered by the local occupancy grid is dynamically changed so that
the goal can always be found from the robot’s current position

▶ The global DWA reverts to the local DWA when the robot is surrounded by obstacles and a path
to the goal cannot be found using the wavefront algorithm

Path Planning: How a Robot Finds Its Way Around 31 / 36



Global Dynamic Window Approach

▶ The global DWA is an extension of the local DWA approach that additionally considers global
environment information

▶ This is particularly done by maintaining a local occupancy grid and recalculating the distance
to the goal using the wavefront algorithm

▶ The size of the region covered by the local occupancy grid is dynamically changed so that
the goal can always be found from the robot’s current position

▶ The global DWA reverts to the local DWA when the robot is surrounded by obstacles and a path
to the goal cannot be found using the wavefront algorithm

Path Planning: How a Robot Finds Its Way Around 31 / 36



Global Dynamic Window Approach

▶ The global DWA is an extension of the local DWA approach that additionally considers global
environment information

▶ This is particularly done by maintaining a local occupancy grid and recalculating the distance
to the goal using the wavefront algorithm

▶ The size of the region covered by the local occupancy grid is dynamically changed so that
the goal can always be found from the robot’s current position

▶ The global DWA reverts to the local DWA when the robot is surrounded by obstacles and a path
to the goal cannot be found using the wavefront algorithm

Path Planning: How a Robot Finds Its Way Around 31 / 36



Global Dynamic Window Approach

▶ The global DWA is an extension of the local DWA approach that additionally considers global
environment information

▶ This is particularly done by maintaining a local occupancy grid and recalculating the distance
to the goal using the wavefront algorithm

▶ The size of the region covered by the local occupancy grid is dynamically changed so that
the goal can always be found from the robot’s current position

▶ The global DWA reverts to the local DWA when the robot is surrounded by obstacles and a path
to the goal cannot be found using the wavefront algorithm

Path Planning: How a Robot Finds Its Way Around 31 / 36



Obstacle Avoidance Techniques

Bug
algorithm(s)

Vector Field
Histogram (VFH)

Bubble band
method

Obstacle avoidance
techniques

Dynamic window
approach (DWA)

Learning-based
obstacle avoidance

Path Planning: How a Robot Finds Its Way Around 32 / 36



Learning-Based Obstacle Avoidance

G. Kahn, P. Abbeel and S. Levine, “BADGR: An Autonomous Self-Supervised
Learning-Based Navigation System,” IEEE Robotics and Automation Letters, vol. 6, no. 2,

pp. 1312–1319, Apr. 2021.

S. -H. Han et al., “Sensor-Based Mobile Robot Navigation via Deep Reinforcement
Learning,” in Proc. IEEE Int. Conf. Big Data and Smart Computing (BigComp), 2018, pp.

147–154.

▶ The previously discussed obstacle avoidance strategies are model-based — a model of the robot
(and sometimes of obstacles) is used for path and motion planning

▶ In recent years, there have been attempts to use learning algorithm that acquire local navigation
behaviours that map sensor measurements to motions — often using learned neural
network-based policies

▶ The development and exploration of such methods is, however, still an ongoing process —
model-based techniques still dominate navigation applications

Path Planning: How a Robot Finds Its Way Around 33 / 36



Learning-Based Obstacle Avoidance

G. Kahn, P. Abbeel and S. Levine, “BADGR: An Autonomous Self-Supervised
Learning-Based Navigation System,” IEEE Robotics and Automation Letters, vol. 6, no. 2,

pp. 1312–1319, Apr. 2021.

S. -H. Han et al., “Sensor-Based Mobile Robot Navigation via Deep Reinforcement
Learning,” in Proc. IEEE Int. Conf. Big Data and Smart Computing (BigComp), 2018, pp.

147–154.

▶ The previously discussed obstacle avoidance strategies are model-based — a model of the robot
(and sometimes of obstacles) is used for path and motion planning

▶ In recent years, there have been attempts to use learning algorithm that acquire local navigation
behaviours that map sensor measurements to motions — often using learned neural
network-based policies

▶ The development and exploration of such methods is, however, still an ongoing process —
model-based techniques still dominate navigation applications

Path Planning: How a Robot Finds Its Way Around 33 / 36



Learning-Based Obstacle Avoidance

G. Kahn, P. Abbeel and S. Levine, “BADGR: An Autonomous Self-Supervised
Learning-Based Navigation System,” IEEE Robotics and Automation Letters, vol. 6, no. 2,

pp. 1312–1319, Apr. 2021.

S. -H. Han et al., “Sensor-Based Mobile Robot Navigation via Deep Reinforcement
Learning,” in Proc. IEEE Int. Conf. Big Data and Smart Computing (BigComp), 2018, pp.

147–154.

▶ The previously discussed obstacle avoidance strategies are model-based — a model of the robot
(and sometimes of obstacles) is used for path and motion planning

▶ In recent years, there have been attempts to use learning algorithm that acquire local navigation
behaviours that map sensor measurements to motions — often using learned neural
network-based policies

▶ The development and exploration of such methods is, however, still an ongoing process —
model-based techniques still dominate navigation applications

Path Planning: How a Robot Finds Its Way Around 33 / 36



Obstacle Avoidance Techniques

Bug
algorithm(s)

Vector Field
Histogram (VFH)

Bubble band
method

Obstacle avoidance
techniques

Dynamic window
approach (DWA)

Learning-based
obstacle avoidance

Path Planning: How a Robot Finds Its Way Around 34 / 36



Temporal Considerations

▶ When integrating path and motion planning algorithms on
robot platforms, it is important to consider any timing
constraints that need to be fulfilled for successful and safe
operation

▶ In this respect, it is important to distinguish between:

▶ operations with real-time demands, which need to have a
very low latency (e.g. real-time obstacle avoidance), and

▶ operations where some latency (due to sensor processing or
planning) can be tolerated (e.g. planning a path to a goal)

▶ Temporal constraints are taken into account within a
navigation architecture

Path Planning: How a Robot Finds Its Way Around 35 / 36



Temporal Considerations

▶ When integrating path and motion planning algorithms on
robot platforms, it is important to consider any timing
constraints that need to be fulfilled for successful and safe
operation

▶ In this respect, it is important to distinguish between:

▶ operations with real-time demands, which need to have a
very low latency (e.g. real-time obstacle avoidance), and

▶ operations where some latency (due to sensor processing or
planning) can be tolerated (e.g. planning a path to a goal)

▶ Temporal constraints are taken into account within a
navigation architecture

Path Planning: How a Robot Finds Its Way Around 35 / 36



Temporal Considerations

▶ When integrating path and motion planning algorithms on
robot platforms, it is important to consider any timing
constraints that need to be fulfilled for successful and safe
operation

▶ In this respect, it is important to distinguish between:

▶ operations with real-time demands, which need to have a
very low latency (e.g. real-time obstacle avoidance), and

▶ operations where some latency (due to sensor processing or
planning) can be tolerated (e.g. planning a path to a goal)

▶ Temporal constraints are taken into account within a
navigation architecture

Path Planning: How a Robot Finds Its Way Around 35 / 36



Summary

▶ Path planning is the problem of finding a collision-free path that brings a robot from its initial
location to a goal

▶ There are various (offline) path planning algorithms, which can be observed as belonging to two
major categories: graph-based search and potential field planning

▶ Path planning algorithms find a path in a known map, but online obstacle avoidance is also
required for dealing with environmental changes; there are many obstacle avoidance methods in the
literature, most of which perform both path and motion planning (e.g. DWA)

▶ Machine learning-based approaches aim to replace the dependency on (simple) robot models by
acquiring navigation behaviours from data

▶ Navigation architectures need to take into account timing constraints on the operation of a robot,
particularly for functionalities that have hard real-time constraints

Path Planning: How a Robot Finds Its Way Around 36 / 36


