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Reminder: Localisation

? ?

?

?

? ? ▶ The process that determines a robot’s pose in an environment
is called localisation

▶ The localisation process is performed with respect to a given
map — thus, localisation requires a map to be given

▶ Since a robot moves around, the localisation estimate needs to
be continuously updated based on the known motion
commands and any relevant environment observations
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Reminder: Recursive State Estimation Using a Bayes Filter

▶ The process of continuously updating the belief based on performed motions and recorded
measurements is called recursive state estimation; this is performed using a Bayes filter

▶ The Bayes filter continuously performs two steps:

Control update (prediction)

The belief is updated based on a performed
motion ut:

bel (xt) =

∫
p (xt|ut,xt−1) bel (xt−1) dxt−1

Measurement update (correction)

The belief is corrected based on a sensor
measurement zt:

bel (xt) = η p (zt|xt) bel (xt)

▶ The control update increases the pose uncertainty, while the measurement update decreases it

▶ Both update equations are based on the Markov assumption, according to which:

▶ xt only depends on xt−1 and ut

▶ zt only depends on xt
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Recursive Bayes Filter Family

▶ The Bayes filter is not a single algorithm, but a family of algorithms, each of which is based on
different assumptions

▶ We will particularly distinguish between the following variants of the recursive Bayes filter as
applied to the robot localisation problem:

▶ Discrete Bayes filter: Applicable when the state is discretised (discussed in MRC)

▶ Kalman filter: Assumes that the state is governed by a Gaussian distribution (discussed last time)

▶ Particle filter: Does not make an assumption about the underlying state distribution; represents
multiple hypotheses about the state by a set of particles (discussed today)
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Monte Carlo Localisation
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Particle Filter Preliminaries

▶ A particle filter is a non-parametric representation of a
Bayes filter

▶ The filter represents a distribution by n particles

P = {p1, ...,pn}
where each particle is a weighted hypothesis about the
state, namely pi =

(
xi, wi

)
▶ The objective is to include particles pi, 1 ≤ i ≤ n in P with a

probability that is proportional to the estimated posterior
distribution:

xi
t+1 ∼ p(xt+1|x0:t,u0:t, z1:t)

▶ A particle filter is a general instantiation of the Bayes filter
and has been used in a variety of problems, for instance
localisation, object tracking, or fault diagnosis
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Particle Filter Algorithm

1: function PARTICLEFILTER(Pt, ut, zt,M)

2: P̂ ← {}
3: sampling dist ← []
4: for i ← 1 to n do
5: xi

t ← P i.x
6: xi

t+1 ∼ p(xt+1|xi
t,ut)

7: wi ← p(zt+1|xt+1,M)

8: P̂ ← P̂ ∪
(
xi
t+1, w

i
)

9: sampling dist.append(wi)

10: sampling dist ← η · sampling dist
11: Pt+1 ← {}
12: for i ← 1 to n do
13: pi ← sample(P̂ , sampling dist )
14: Pt+1 ← Pt+1 ∪ pi

15: return Pt+1

▶ In a particle, filter, both the motion and the
measurement update are operations on the
particle set Pt at time t:

▶ Motion update: The states of the particles are
updated by sampling from a motion model

▶ Measurement update: The particles’ weights are
updated based on the measurement model with
respect to a map M

▶ After these two steps, the posterior distribution is
updated — this is achieved by resampling the
particle set

▶ Resampling is performed using a procedure called
importance sampling, during which particles from Pt

are sampled with replacement proportional to
their weights; this results in a new particle set Pt+1
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Importance Sampling
▶ Importance sampling is a technique based on which samples are generated from a proposal

distribution g(x) instead of a target distribution f(x)

▶ g is defined so that, if f(x) > 0, then it should also be the case that g(x) > 0

▶ Given a random variable X with a density f(x), its expected value can be calculated as

Ef [X] =

∫
f(x)xdx

=

∫
f(x)

g(x)
g(x)xdx

=

∫
w(x)g(x)xdx = Eg[W (X)X]

▶ In a particle filter:

▶ the proposal distribution g(x) = p(xt+1|ut+1,xt) p(x0:t|u0:t,z1:t)︸ ︷︷ ︸
bel(xt)

▶ the target distribution f(x) = p(zt+1|xt+1)p(xt+1|ut+1,xt) p(x0:t|u0:t,z1:t)︸ ︷︷ ︸
bel(xt)▶ the weights wi ∝ p(zt+1|xt+1)
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Monte Carlo Localisation

▶ Localisation performed using particle filters is called Monte
Carlo localisation

▶ Monte Carlo methods represent a general category of
techniques based on which solutions to problems are
discovered using random sampling

▶ In the most general case, the initial state of the robot is fully
unknown; this can be expressed by sampling the initial
particle set P0 from a uniform distribution
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Particle Filter Illustration: Motion Update
During the motion update step, each particle is updated according to the motion model

1: function PARTICLEFILTER(Pt, ut, zt,M)

2: P̂ ← {}
3: sampling dist ← []
4: for i ← 1 to n do
5: xi

t ← P i.x
6: xi

t+1 ∼ p(xt+1|xi
t,ut)

7: wi ← p(zt+1|xt+1,M)

8: P̂ ← P̂ ∪
(
xi
t+1, w

i
)

9: sampling dist.append(wi)

10: sampling dist ← η · sampling dist
11: Pt+1 ← {}
12: for i ← 1 to n do
13: pi ← sample(P̂ , sampling dist )
14: Pt+1 ← Pt+1 ∪ pi

15: return Pt+1
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Particle Filter Illustration: Measurement Update
During the measurement update, each particle is reweighed based on a given observation —
particles that result in likelier measurements are assigned higher weights

1: function PARTICLEFILTER(Pt, ut, zt,M)

2: P̂ ← {}
3: sampling dist ← []
4: for i ← 1 to n do
5: xi

t ← P i.x
6: xi

t+1 ∼ p(xt+1|xi
t,ut)

7: wi ← p(zt+1|xt+1,M)

8: P̂ ← P̂ ∪
(
xi
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i
)

9: sampling dist.append(wi)

10: sampling dist ← η · sampling dist
11: Pt+1 ← {}
12: for i ← 1 to n do
13: pi ← sample(P̂ , sampling dist )
14: Pt+1 ← Pt+1 ∪ pi

15: return Pt+1

Monte Carlo Localisation: Localising Using a Particle Filter 13 / 26



Particle Filter Illustration: Particle Resampling
The particles are finally resampled (with replacement) proportional to their weights

1: function PARTICLEFILTER(Pt, ut, zt,M)

2: P̂ ← {}
3: sampling dist ← []
4: for i ← 1 to n do
5: xi

t ← P i.x
6: xi

t+1 ∼ p(xt+1|xi
t,ut)

7: wi ← p(zt+1|xt+1,M)

8: P̂ ← P̂ ∪
(
xi
t+1, w

i
)

9: sampling dist.append(wi)

10: sampling dist ← η · sampling dist
11: Pt+1 ← {}
12: for i ← 1 to n do
13: pi ← sample(P̂ , sampling dist )
14: Pt+1 ← Pt+1 ∪ pi

15: return Pt+1
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x2

x3
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Extracting the Robot’s State

▶ In localisation, we are typically interested in a single
estimate of a robot’s state — the states of all particles
are not of direct interest

▶ One way to achieve this is to represent the state as the
weighted mean of the particles: x̃t =

∑n
i=1 w

ixi
t

▶ This corresponds to approximating the unknown
distribution f(x) by a Gaussian distribution

▶ The variance of this distribution provides information
about how certain we can be in the state
approximation

▶ The variance information can be used as a heuristic to
reinitialise the filter

▶ The particles can also be used to approximate the density
more accurately, for instance using a histogram or with
kernel density estimation
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Particle Deprivation and Kidnapped Robot Problem Avoidance

▶ Unlike the Kalman filter, the particle filter can, in principle, be used to solve the kidnapped robot
problem and thus recover from localisation failures

▶ This is due to the fact that the particle filter can model multimodal distributions, while the Kalman
filter represents the underlying state distribution by a unimodal Gaussian distribution

▶ The most common way to avoid localisation failures is to include random particles in Pt during
the resampling step, typically sampled from a uniform distribution

▶ While random particles can be included continuously and with the same frequency, a better
strategy for this is to couple the inclusion of random particles to the evolution of the
measurement likelihood

▶ This is an intuitive principle based on which more particles are included only if the particles’
measurement likelihood reduces over time
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Adaptive Monte Carlo Localisation (AMCL)

▶ The basic particle filter algorithm uses a fixed number of samples n

▶ The number of particles required for accurately approximating the state is typically high (in the order
of thousands or even tens of thousands) — although this depends on the map size

▶ In practice, using a fixed number of particles is computationally suboptimal, particularly once the
particles converge to a state estimate

▶ A practically more useful approach is to vary the number of particles depending on the
distribution approximation quality — this is the approach followed by commonly used
localisation frameworks, such as AMCL in ROS

▶ AMCL modifies the particle resampling step so that particles are sampled until a desired
distribution quality is reached

▶ The distribution quality is measured by overlaying a discrete grid over the map and calculating an
approximation bound based on the number of grid cells with non-zero particles

▶ The concrete sampling technique used by AMCL is called KLD-sampling
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Handling Dynamic Environments

▶ The Monte Carlo localisation algorithm discussed above is actually only applicable to static
environments — dynamic obstacles will have a direct effect on the measurements, but this
effect is not considered by the measurement model

▶ Two main strategies can be used to handle dynamic obstacles during localisation:

▶ Modelling dynamic obstacles in the measurement model: This is the most general way of handling
dynamic obstacles, but is typically inefficient — a variable state dimensionality needs to be considered

▶ Outlier rejection: Using this strategy, measurements from dynamic obstacles are rejected before the
particle filter performs a measurement update

▶ Particularly outlier rejection requires a model of dynamic obstacles; such a model may be learned
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▶ Particularly outlier rejection requires a model of dynamic obstacles; such a model may be learned
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Probabilistic Motion Models
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Probabilistic Motion Models

▶ The particle filter performs a motion update of each particle based on a motion command ut+1;
this update is not deterministic, but probabilistic — by sampling from a motion model
p(xt+1|ut+1,xt) — so that it takes the motion uncertainty into account

▶ The used motion model depends on the type of motion command that is sent to a robot

▶ We will briefly look at two types of motion models for planar motion:

▶ Velocity motion model: The motion command is specified by linear and angular velocities:
u = (v, ω)T

▶ Odometry motion model: The motion command is given by relative odometry u = (xt,xt+1)
T ,

where xt = (x, y, θ)T and xt+1 = (x′, y′, θ
′
)
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Velocity Motion Model
▶ Given a velocity command (v, ω)T , a robot moves along a circle of radius r =

∣∣ v
ω

∣∣ with center(
x− v

ω sin θ, y + v
ω cos θ

)T
▶ Based on the velocity motion model, a robot is

controlled by a velocity command under the
influence of noise:(

v̂
ω̂

)
=

(
v
ω

)
+

(
ϵα1v2+α2ω2

ϵα3v2+α4ω2

)
▶ The robot is also assumed to undergo a final

orientation once the goal location is reached; the
final orientation is thus given by θ′ = θ + ω̂∆t+ γ̂∆t
with γ̂ = ϵα5v2+α6ω2

▶ Under the velocity motion model, the pose update is given asx′

y′

θ′

 =

x
y
θ

+

− v̂
ω̂ sin θ + v̂

ω̂ sin(θ + ω̂∆t)
v̂
ω̂ cos θ − v̂

ω̂ cos(θ + ω̂∆t)
ω̂∆t+ γ̂∆t


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Velocity Motion Model Sampling

▶ In the particle filter, we are interested in sampling from the velocity motion model; this sampling
can be done using the algorithm below

1: function SAMPLEVELOCITYMOTIONMODEL(xt = (x, y, θ), ut = (v, ω))
2: v̂ ← v+ sample(α1v2 + α2ω2)
3: ω̂ ← ω+ sample(α3v2 + α4ω2)
4: γ̂ ← sample(α5v2 + α6ω2)

5: x′ ← x− v̂
ω̂
sin θ + v̂

ω̂
sin(θ + ω̂∆t)

6: y′ ← y + v̂
ω̂
cos θ − v̂

ω̂
cos(θ + ω̂∆t)

7: θ′ ← θ + ω̂∆t+ γ̂∆t
8: return (x′, y′, θ′)T
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Odometry Motion Model
▶ Given an initial pose xt and a final pose xt+1, the motion can be modelled by an initial rotation

δrot1 towards the goal, a translational motion δtrans, and a final rotation δrot2

▶ Under the odometry motion model, the components of
the motion are all under the influence of noise: δ̂rot1

δ̂rot2
δ̂trans

 =

δrot1
δrot2
δtrans

+

 ϵα1δ2rot1+α2δ2trans

ϵα1δ2rot1+α2δ2trans

ϵα3δ2trans+α4δ2rot1+α4δ2rot2



▶ The pose update under the odometry motion model is thus given asx′

y′

θ′

 =

x
y
θ

+

δ̂trans cos(θ + δ̂rot1)

δ̂trans sin(θ + δ̂rot1)

δ̂rot1 + δ̂rot2


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Odometry Motion Model Sampling
▶ The algorithm below can be used for sampling from the odometry motion model

1: function SAMPLEODOMETRYMOTIONMODEL(xt = (x, y, θ), ut = (xt−1,xt))
2: δrot1 ← atan2(y′ − y, x′ − x)− θ

3: δtrans ←
√

(x′ − x)2 + (y′ − y)2

4: δrot2 ← θ
′ − θ − δrot1

5: δ̂rot1 ← δrot1 − sample
(
α1δ2rot1 + α2δ2trans

)
6: δ̂trans ← δtrans − sample

(
α3δ2trans + α4δ2rot1 + α4δ2rot2

)
7: δ̂rot2 ← δrot2 − sample

(
α1δ2rot2 + α2δ2trans

)
8: x′ ← x+ δ̂trans cos(θ + δ̂rot1 )

9: y′ ← y + δ̂trans sin(θ + δ̂rot1 )

10: θ′ ← θ + δ̂rot1 + δ̂rot2
11: return (x′, y′, θ′)T
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Determining the Noise Parameters

▶ Both the velocity motion model and the odometry motion model represent noise by a set of
parameters α1:6 and α1:4, respectively

▶ The noise parameters are robot-specific — the noise induced by a given motion varies between
robots, as it depends on the concrete kinematic structure

▶ These parameters need to be determined experimentally, using a procedure as follows:

1. Collect a dataset of robot motions

2. Calculate the probability p(xt+1|ut+1,xt) under the chosen motion model — algorithms for
calculating the probability are given in the reference book

3. Perform parameter estimation, for instance using maximum likelihood estimation (MLE)
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Summary

▶ A particle filter approximates an unknown state distribution by a discrete set of particles

▶ Each particle represents a weighted hypothesis about the state, where the weight is determined by the
measurement model

▶ Particle filters update the approximation of the state distribution by performing importance
sampling

▶ At each iteration, particles are sampled with replacement; the probability that a particle is sampled is
proportional to its weight

▶ Unlike a Kalman filter, a particle filter can, in principle, be used to recover from the kidnapped
robot problem

▶ For this, randomly distributed particles can be added during the particle resampling process

▶ Probabilistic motion models, such as the velocity motion model and the odometry motion model,
can be used for recursive state estimation using particle filters
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