o . Hochschule " s S
. . onn-Aachen .
Bonn-Rhein-Sieg - It International Center for . Institute for Al and
L)

University of Applied Sciences Information Technology Autonomous Systems

Monte Carlo Localisation

Localising Using a Particle Filter

Dr. Alex Mitrevski
Master of Autonomous Systems

Structure

» Reminder: Robot localisation essentials
» Monte Carlo localisation
» Probabilistic motion models

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Institute for Al and
Autonomous Systems

£ " Probabilistic
3 R

Monte Carlo Localisation: Localising Using a Particle Filter

0BOTICS

2/26

Reminder: Robot Localisation Essentials

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Instiute for Al and
‘A“W"“'“““SSV“E'“ Monte Carlo Localisation: Localising Using a Particle Filter 3/26

Reminder: Localisation

» The process that determines a robot's pose in an environment
is called localisation

» The localisation process is performed with respect to a given
map — thus, localisation requires a map to be given

» Since a robot moves around, the localisation estimate needs to
be continuously updated based on the known motion
commands and any relevant environment observations

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Institute for Al and
’..A““’""'“"““y“?’“ Monte Carlo Localisation: Localising Using a Particle Filter 4/26

Reminder: Recursive State Estimation Using a Bayes Filter

ROBOTICS

» The process of continuously updating the belief based on performed motions and recorded
measurements is called recursive state estimation; this is performed using a Bayes filter

» The Bayes filter continuously performs two steps:

Control update (prediction) Measurement update (correction)
The belief is updated based on a performed The belief is corrected based on a sensor
motion w;: measurement z;:

bel (z) = /p(wtlut,wt-l)bel (T1-1) dzr s bel (x;) = np (z¢|:) bel ()

» The control update increases the pose uncertainty, while the measurement update decreases it

» Both update equations are based on the Markov assumption, according to which:
» x; only depends on x:—1 and u;
» z; only depends on x;

O . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Monte Carlo Localisation: Localising Using a Particle Filter 5/26

Recursive Bayes Filter Family

» The Bayes filter is not a single algorithm, but a family of algorithms, each of which is based on
different assumptions

» We will particularly distinguish between the following variants of the recursive Bayes filter as
applied to the robot localisation problem:

» Discrete Bayes filter: Applicable when the state is discretised (discussed in MRC)
» Kalman filter: Assumes that the state is governed by a Gaussian distribution (discussed last time)

» Particle filter: Does not make an assumption about the underlying state distribution; represents
multiple hypotheses about the state by a set of particles (discussed today)

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

sttt for Al ond
’.' Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 6 /26

Monte Carlo Localisation

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Instiute for Al and
‘A“W"“'“““SSV“E'“ Monte Carlo Localisation: Localising Using a Particle Filter 7/ 26

Particle Filter Preliminaries

i Probapitistic

ROBOTICS

» A particle filter is a non-parametric representation of a
Bayes filter

PY) |
— Samples |

P

X
— Samples

Pl

y
=gk
% > H / E

O . Hochschule

Bonn-Rhein-Sieg
University of Applied Sciences

Instiute for Al and
‘A“W"“'“““SSV“E'“ Monte Carlo Localisation: Localising Using a Particle Filter 8 /26

Particle Filter Preliminaries

i Probapitistic

ROBOTICS

» A particle filter is a non-parametric representation of a
Bayes filter

= — » The filter represents a distribution by n particles

P= {pl,...,p"}

where each particle is a weighted hypothesis about the
state, namely p’ = (z', w’)

y=g(x)

P

(X
— Samples

Pl

o . Hochschule
Bonn-Rhein-Sie

University of Applied Sciences

Institute for Al and
Autonomous Systems

Monte Carlo Localisation: Localising Using a Particle Filter

8 /26

Particle Filter Preliminaries

i Probapitistic

ROBOTICS

» A particle filter is a non-parametric representation of a
Bayes filter

o — » The filter represents a distribution by n particles

P={p',...,p"}
where each particle is a weighted hypothesis about the
state, namely p’ = (z', w’)

» The objective is to include particles p?,1 < i < n in P with a

probability that is proportional to the estimated posterior
distribution:

o

Pl

y
y=g(x)
% > H | /

wi+1 ~ D(T41|T0:t, Worts Z1:¢)

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Institute for Al and
Autonomous Systems

Monte Carlo Localisation: Localising Using a Particle Filter 8 /26

Particle Filter Preliminaries

pY) | — Function g(x)

— Samples

3

w ’ x

y=g(x)

)
— Samples

A

i)

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Institute for Al and
Autonomous Systems

fProbabitistic

ROBOTICS

A particle filter is a non-parametric representation of a
Bayes filter

The filter represents a distribution by n particles

P={p',...,p"}
where each particle is a weighted hypothesis about the
state, namely p’ = (z', w’)

The objective is to include particles p’,1 < i < n in P with a

probability that is proportional to the estimated posterior
distribution:

ﬂ'3i+1 ~ D(T41|T0:t, Worts Z1:¢)

A particle filter is a general instantiation of the Bayes filter
and has been used in a variety of problems, for instance
localisation, object tracking, or fault diagnosis

Monte Carlo Localisation: Localising Using a Particle Filter 8 /26

Particle Filter Algorithm

» In a particle, filter, both the motion and the
measurement update are operations on the
1: function PARTICLEFILTER(F;, ¢, 2¢, M) particle set P; at time t:
2 P {3
3 sampling_dist +]
4: for i <~ 1 ton do
5: xy — P'.x
6: w§+1 ~ p(Tg1|Tl, ur)
7 W' p(ze1l@esr, M)
8: P+ PU (2}, w)
9: sampling_dist.append(w*)

10: sampling_dist <— 7 - sampling_dist
11: Py« {}

12: for i < 1 ton do

13: pt + sample(P, sampling_dist)
14: Pit1 + Py Upt

15: return P

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

sttt for Al ond
’.' Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 9/26

Particle Filter Algorithm

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:

15:

o . Hochschule
Bonn-Rhein-Sieg

function PARTICLEFILTER(DP;, ut, 2¢, M)
P {3
sampling_dist +]
for i < 1 to n do
zi +— Plx
zy)~ p(@er1]E], ue)
W' p(ze1l@esr, M)
P+ PU (zi_,'_l,wi)
sampling_dist.append(w*)
sampling_dist «<— n - sampling_dist
Py« {}
fori < 1tondo
p* < sample(P, sampling_dist)
Py P Upi
return P

University of Applied Sciences

» In a particle, filter, both the motion and the
measurement update are operations on the
particle set P; at time t:

» Motion update: The states of the particles are
updated by sampling from a motion model

sttt for Al ond
’.' Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 9/26

Particle Filter Algorithm

» In a particle, filter, both the motion and the
measurement update are operations on the

1: function PARTICLEFILTER(F;, ¢, 2¢, M) particle set P; at time t:

2 P {} » Motion update: The states of the particles are
3 sampling_dist «] updated by sampling from a motion model

4: for i < 1 ton do

5 xi « Plx » Measurement update: The particles’ weights are
6: @ty ~ (e |, we) updated based on the measurement model with
7 wt <+ p(zit1|Tit1, M) respect to a map M

8: Peﬁu(mg’ﬂ,wi)

9: sampling_dist.append(w*)
10: sampling_dist <— 7 - sampling_dist
11: Py« {}
12: fori < 1tondo
13: p* < sample(P, sampling_dist)
14. P+ P41 Up*
15: return P

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Institute for Al and
’..A““’""'“"““y“?’“ Monte Carlo Localisation: Localising Using a Particle Filter 9 /26

Particle Filter Algorithm

abilistic
ROBOTICS

» In a particle, filter, both the motion and the
measurement update are operations on the

1: function PARTICLEFILTER(F;, ¢, 2¢, M) particle set P; at time t:

2 Pe{} » Motion update: The states of the particles are
3 sampling_dist «] updated by sampling from a motion model

4: for i < 1 ton do))

5 xi « Plx » Measurement update: The particles’ weights are
6: w§_+1 ~ p(Tg1|Tl, ur) updated based on the measurement model with
7 w* = p(zt+1l@es1, M) respect to a map M

8: P+ PU (2}, w)

o: sampling_dist.append(w*) » After these two steps, the posterior distribution is
1(1): ;fmp“”g-{d}i“ < 1 - sampling_dist updated — this is achieved by resampling the

: t+1 .

12: fori < 1tondo particle set
13: p* < sample(P, sampling_dist)
14: P+ P41 Up*
15: return P

O @ s

nstitute for Al and
University of Applied Sciences ’..A“"’”"'“"““y“*’“ Monte Carlo Localisation: Localising Using a Particle Filter 9 /26

abilistic
ROBOTICS

Particle Filter Algorithm

» In a particle, filter, both the motion and the
measurement update are operations on the

1: function PARTICLEFILTER(F;, ¢, 2¢, M) particle set P; at time t:

2 Pe{} » Motion update: The states of the particles are

3 sampling_dist «] updated by sampling from a motion model

4: for i < 1 ton do))

5 xi « Plx » Measurement update: The particles’ weights are
6: @ty ~ (e |, we) updated based on the measurement model with
7 w? < p(zt41 |1, M) respect to a map M

8 pepu(za_l,wi)

o: sampling_dist.append(w*) > After these two steps, the posterior distribution is
1(1’: ;fmp“”g-{d;“ < 1 - sampling_dist updated — this is achieved by resampling the

: t+1 .
12: fori < 1tondo particle set
13: p* < sample(P, sampling_dist) . .
14: P11+ P Upt » Resampling is performed using a procedure called
15: return Py importance sampling, during which particles from P,

are sampled with replacement proportional to
their weights; this results in a new particle set Py
O @ v

University of Applied Sciences

osiue for Al and
’.'A“‘“""'“"““y“?’“ Monte Carlo Localisation: Localising Using a Particle Filter 9 /26

ROBOTICS

Importance Sampling

» Importance sampling is a technique based on which samples are generated from a proposal
distribution g(z) instead of a target distribution f(z)

> g is defined so that, if f(z) > 0, then it should also be the case that g(z) > 0

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Monte Carlo Localisation: Localising Using a Particle Filter 10 / 26

i

RoBOTICS

Importance Sampling

» Importance sampling is a technique based on which samples are generated from a proposal 4
distribution g(z) instead of a target distribution f(z)

> g is defined so that, if f(z) > 0, then it should also be the case that g(z) > 0

> Given a random variable X with a density f(z), its expected value can be calculated as

/f x)xdx
/f(gg Yedx
)

= /w(x g(x)xdr = Eg[W(X)X]

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

e for Al ond
’.. Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 10 / 26

ROBOTICS

Importance Sampling ..

» Importance sampling is a technique based on which samples are generated from a proposal 4
distribution g(z) instead of a target distribution f(z)

> g is defined so that, if f(z) > 0, then it should also be the case that g(z) > 0

> Given a random variable X with a density f(z), its expected value can be calculated as

/f x)zdz
= [ystereds
_ /w(m)g(x)xdﬂc = E,[W(X)X]

» In a particle filter:
» the proposal distribution g(x) = p(xit1|wet1,) p(xo:t|wo:t, 21:¢)
—_——
bel(x¢)
» the target distribution f(x) = p(Zt41|Te+1)p(Teq1|Ues1, Te) p(X0:t | U0t , Z1:¢)
——— —

> the weights w® p(zt+1|mt+1) bel(z¢)

o ‘ Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Monte Carlo Localisation: Localising Using a Particle Filter 10 / 26

Monte Carlo Localisation

(@)

(b)

A
|“|\

(@)

(©)]

] fi
l"""‘ A_A A
lmm l_ A Il
e "

oce

Hochschule
Bonn-Rhein-Sieg
University of Applied Sciences

& *Proba

abilistic
ROBOTICS

» Localisation performed using particle filters is called Monte
Carlo localisation
» Monte Carlo methods represent a general category of
techniques based on which solutions to problems are
discovered using random sampling

» In the most general case, the initial state of the robot is fully

unknown; this can be expressed by sampling the initial
particle set Py from a uniform distribution

sttt for Al ond
’.. Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 11 /26

Particle Filter lllustration: Motion Update

During the motion update step, each particle is updated according to the motion model

1
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:

15:

oce

function PARTICLEFILTER(DP;, ut, 2¢, M)

P {3

sampling_dist +]

for i < 1 to n do
z; + P'.x
a:; Y p(eiy1 \w;uf)
W' p(zes1l@esr, M)

P+ PU (mi_,'_l,wi)
sampling_dist.append(w®)
sampling_dist <— n - sampling_dist

P+ {}

for i < 1 ton do
pt + sample(P, sampling_dist)
Pt+1 — Pt+1 Upi

return Pt+1

Hochschule
Bonn-Rhein-Sie
University of Applied Sciences

Institute for Al and
Autonomous Systems

-
/7

-

ﬁiﬁg

D =

9

L

Monte Carlo Localisation: Localising Using a Particle Filter

12 /26

Particle Filter lllustration: Motion Update

During the motion update step, each particle is updated according to the motion model

1
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:

15:

oce

function PARTICLEFILTER(DP;, ut, 2¢, M)

P {3

sampling_dist +]

for i < 1 to n do
a:§ — Pl
m; e P(mt+1 \w;,uf)
W' p(zes1l@esr, M)

P+ PU (mi_,'_l,wi)
sampling_dist.append(w®)
sampling_dist <— n - sampling_dist

P+ {}

for i < 1 ton do
pt + sample(P, sampling_dist)
Pt+1 — Pt+1 Upi

return Pt+1

Hochschule
Bonn-Rhein-Sie
University of Applied Sciences

Institute for Al and
Autonomous Systems

r-

O

9

L

Monte Carlo Localisation: Localising Using a Particle Filter

12 /26

Particle Filter Illustration: Measurement Update
During the measurement update, each particle is reweighed based on a given observation —

particles that result in likelier measurements are assigned higher weights

function ParTICLEFILTER(DP;, ut, 2¢, M) L\—ﬁ—j\\~lz ; Q

1:

2 P { = -

3 sampling_dist <]

4: for i + 1 ton do 4.

5: zi +— Plx ’ Q

6: ‘13;.»,_1 Np(mt+1|m%:ut) \:I_

7 w' 4= p(zt41|@eq1, M)

8: P+ PU (az;+1,11'i)

9: sampling_dist.append(w?) .
10: sampling_dist < 7 - sampling_dist m
11: P+ {}

12: for i < 1 to n do

13: Pt sample(]s7 sampling_dist)

7
14: Py < P41 Up* 5 .. QL
15: return P U—/
—a -
L

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

sttt for Al ond
’.' Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 13 /26

Particle Filter lllustration: Particle Resampling
The particles are finally resampled (with replacement) proportional to their weights

function PArTICLEFILTER(P;, us, 2¢, M)

P {

sampling_dist «+ ||

for i < 1 ton do
zi + Plx
a’;.»,_l ~ p(@it1l|zy, ue)
w' < p(zep1|®ir1, M)

P+ PuU (a:;'+1,wi)
sampling_dist.append(w?)
sampling_dist <— n - sampling_dist

Py« {}

for i « 1 to n do
pt samplc(ﬁ, sampling_dist)
P/+1 < P/,+1 Upi

return Py

Hochschule
Bonn-Rhein-Sie
University of Applied Sciences

Institute for Al and
Autonomous Systems

5"@;7

Monte Carlo Localisation: Localising Using a Particle Filter

14 / 26

Extracting the Robot's State

» In localisation, we are typically interested in a sing
estimate of a robot’s state — the states of all particles
T~ are not of direct interest

-

ply) Ply)
)| || CEl

)?)>
-

o) oly)

Figure 4.5 Different ways of extracting densities from partcles. () Density and sample set approximation, (b) Gaussian
approximation (mean and variance). (c) histogram approximation, (d) kemel density estimate. The choice of approximation
strongly. i

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Institute for Al and
’.' Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 15 / 26

Extracting the Robot's State

» In localisation, we are typically interested in a sing
estimate of a robot’s state — the states of all particles
== are not of direct interest

v
— Gaussian of ply)
— Mean of

f ply)
-+ Gaussian of samples
-~ - Mean of samples.

» One way to achieve this is to represent the state as the
weighted mean of the particles: , =Y | w'a}
» This corresponds to approximating the unknown

£) distribution f(x) by a Gaussian distribution
Bl | | e » The variance of this distribution provides information
about how certain we can be in the state
)? 1 > approximation
S » The variance information can be used as a heuristic to

reinitialise the filter

Figure 4.5 Different way

o . Hochschule
Bonn-Rhein-Sieg Insttte for Aond
University of Applied Sciences wionomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 15 /26

Extracting the Robot's State

» In localisation, we are typically interested in a sing
estimate of a robot’s state — the states of all particles
== are not of direct interest

v
— Gaussian of ply)
— Mean of ply)

-~ Gaussian of samples
-~ - Mean of samples.

» One way to achieve this is to represent the state as the
weighted mean of the particles: , =Y | w'a}
» This corresponds to approximating the unknown

)) distribution f(x) by a Gaussian distribution
Bl | | e » The variance of this distribution provides information
about how certain we can be in the state

approximation

» The variance information can be used as a heuristic to
reinitialise the filter

Figure 4.5 Diffe

» The particles can also be used to approximate the density
more accurately, for instance using a histogram or with
kernel density estimation

o . Hochschule
Bonn-Rhein-Sieg Insttte for Alond
University of Applied Sciences wionomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 15 /26

i

ROBOTICS

Particle Deprivation and Kidnapped Robot Problem Avoidance

» Unlike the Kalman filter, the particle filter can, in principle, be used to solve the kidnapped robot
problem and thus recover from localisation failures
» This is due to the fact that the particle filter can model multimodal distributions, while the Kalman
filter represents the underlying state distribution by a unimodal Gaussian distribution

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

sttt for Al ond
’.. Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 16 / 26

Particle Deprivation and Kidnapped Robot Problem Avoidance

» Unlike the Kalman filter, the particle filter can, in principle, be used to solve the kidnapped robot
problem and thus recover from localisation failures
» This is due to the fact that the particle filter can model multimodal distributions, while the Kalman
filter represents the underlying state distribution by a unimodal Gaussian distribution

» The most common way to avoid localisation failures is to include random particles in P; during
the resampling step, typically sampled from a uniform distribution

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Monte Carlo Localisation: Localising Using a Particle Filter 16 / 26

Particle Deprivation and Kidnapped Robot Problem Avoidance

» Unlike the Kalman filter, the particle filter can, in principle, be used to solve the kidnapped robot
problem and thus recover from localisation failures
» This is due to the fact that the particle filter can model multimodal distributions, while the Kalman
filter represents the underlying state distribution by a unimodal Gaussian distribution

» The most common way to avoid localisation failures is to include random particles in P; during
the resampling step, typically sampled from a uniform distribution

» While random particles can be included continuously and with the same frequency, a better
strategy for this is to couple the inclusion of random particles to the evolution of the
measurement likelihood

» This is an intuitive principle based on which more particles are included only if the particles’
measurement likelihood reduces over time

o ‘ Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Monte Carlo Localisation: Localising Using a Particle Filter 16 / 26

ROBOTICS

Adaptive Monte Carlo Localisation (AMCL)

» The basic particle filter algorithm uses a fixed number of samples n

» The number of particles required for accurately approximating the state is typically high (in the order
of thousands or even tens of thousands) — although this depends on the map size

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

sttt for Al ond
’.' Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 17 / 26

ROBOTICS

Adaptive Monte Carlo Localisation (AMCL)

» The basic particle filter algorithm uses a fixed number of samples n

» The number of particles required for accurately approximating the state is typically high (in the order
of thousands or even tens of thousands) — although this depends on the map size

» In practice, using a fixed number of particles is computationally suboptimal, particularly once the
particles converge to a state estimate

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

sttt for Al ond
’.. Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 17 / 26

Adaptive Monte Carlo Localisation (AMCL)

» The basic particle filter algorithm uses a fixed number of samples n
» The number of particles required for accurately approximating the state is typically high (in the order
of thousands or even tens of thousands) — although this depends on the map size

» In practice, using a fixed number of particles is computationally suboptimal, particularly once the
particles converge to a state estimate

» A practically more useful approach is to vary the number of particles depending on the
distribution approximation quality — this is the approach followed by commonly used
localisation frameworks, such as AMCL in ROS

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Monte Carlo Localisation: Localising Using a Particle Filter 17 / 26

Adaptive Monte Carlo Localisation (AMCL)

» The basic particle filter algorithm uses a fixed number of samples n

» The number of particles required for accurately approximating the state is typically high (in the order
of thousands or even tens of thousands) — although this depends on the map size

» In practice, using a fixed number of particles is computationally suboptimal, particularly once the
particles converge to a state estimate

» A practically more useful approach is to vary the number of particles depending on the
distribution approximation quality — this is the approach followed by commonly used
localisation frameworks, such as AMCL in ROS

» AMCL modifies the particle resampling step so that particles are sampled until a desired
distribution quality is reached

» The distribution quality is measured by overlaying a discrete grid over the map and calculating an
approximation bound based on the number of grid cells with non-zero particles

» The concrete sampling technique used by AMCL is called KLD-sampling

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

sttt for Al ond
’.. Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 17 / 26

ROBOTICS

Handling Dynamic Environments

» The Monte Carlo localisation algorithm discussed above is actually only applicable to static
environments — dynamic obstacles will have a direct effect on the measurements, but this
effect is not considered by the measurement model

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Institute for Al and
’.' Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 18 / 26

ROBOTICS

Handling Dynamic Environments

» The Monte Carlo localisation algorithm discussed above is actually only applicable to static
environments — dynamic obstacles will have a direct effect on the measurements, but this
effect is not considered by the measurement model

» Two main strategies can be used to handle dynamic obstacles during localisation:

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

sttt for Al ond
’.' Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 18 / 26

Handling Dynamic Environments

» The Monte Carlo localisation algorithm discussed above is actually only applicable to static
environments — dynamic obstacles will have a direct effect on the measurements, but this
effect is not considered by the measurement model

» Two main strategies can be used to handle dynamic obstacles during localisation:

» Modelling dynamic obstacles in the measurement model: This is the most general way of handling
dynamic obstacles, but is typically inefficient — a variable state dimensionality needs to be considered

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

sttt for Al ond
’.. Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 18 / 26

Handling Dynamic Environments

» The Monte Carlo localisation algorithm discussed above is actually only applicable to static
environments — dynamic obstacles will have a direct effect on the measurements, but this
effect is not considered by the measurement model

» Two main strategies can be used to handle dynamic obstacles during localisation:

» Modelling dynamic obstacles in the measurement model: This is the most general way of handling
dynamic obstacles, but is typically inefficient — a variable state dimensionality needs to be considered

» Outlier rejection: Using this strategy, measurements from dynamic obstacles are rejected before the
particle filter performs a measurement update

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

sttt for Al ond
’.. Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 18 / 26

Handling Dynamic Environments

» The Monte Carlo localisation algorithm discussed above is actually only applicable to static
environments — dynamic obstacles will have a direct effect on the measurements, but this
effect is not considered by the measurement model

» Two main strategies can be used to handle dynamic obstacles during localisation:

» Modelling dynamic obstacles in the measurement model: This is the most general way of handling
dynamic obstacles, but is typically inefficient — a variable state dimensionality needs to be considered

» Outlier rejection: Using this strategy, measurements from dynamic obstacles are rejected before the
particle filter performs a measurement update

» Particularly outlier rejection requires a model of dynamic obstacles; such a model may be learned

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

nstiutefor Al ond
’.' Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 18 / 26

Probabilistic Motion Models

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

Institute for Al and
’.. Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 19 /26

Probabilistic Motion Models

» The particle filter performs a motion update of each particle based on a motion command wu;41;
this update is not deterministic, but probabilistic — by sampling from a motion model
P(Xit1|Uts1, T) — so that it takes the motion uncertainty into account

» The used motion model depends on the type of motion command that is sent to a robot

» We will briefly look at two types of motion models for planar motion:
» Velocity motion model: The motion command is specified by linear and angular velocities:
u = (v,w)T
» Odometry motion model: The motion command is given by relative odometry u = (%, Z¢+1)”,
where Z;, = (7,%,0)” and &y1 = (7,7,0)

o . Hochschule
Bonn-Rhein-Sieg Insttte for Alond
University of Applied Sciences wionomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 20 /26

Velocity Motion Model
» Given a velocity command (v,w)”, a robot moves along a circle of radius r = |£| with centg
(z— Lsing,y+2 cos@)T
» Based on the velocity motion model, a robot is
controlled by a velocity command under the
influence of noise:

; ; . .
P — N z — + a1V +oow)
(5/79 (&/7 (4} <w> (w) <Easv2+a4w2
} (5—
» The robot is also assumed to undergo a final
orientation once the goal location is reached; the
final orientation is thus given by 6’ = 0 + OAt + YAt

with 4 = €asv?+agw?

Figure 5.3 The velocity motion model, for different noise parameter settings.

» Under the velocity motion model, the pose update is given as

x —2sinf + = sin(0 + wA?)
= |y]|+ | Zcost— =cos(f +wAL)
0 WAL+ YA
0@ e "-
University of Applied Sciences Autonomous Systers Monte Carlo Localisation: Localising Using a Particle Filter 21/26

ROBOTICS

Velocity Motion Model Sampling

» In the particle filter, we are interested in sampling from the velocity motion model; this sampling
can be done using the algorithm below

1: function SavMpLEVELOCITYMOTIONMODEL(Zt = (2,Y,0), ur = (v,w))

2: 9 < v+ sample(aiv? + asw?)

3: @& < w+ sample(agv? + asw?)

4: 4 ¢ sample(asv? + agw?)
2/ < x— Zsinf +
Y 4 y+ Zcosh— 2
0/ — 0+ wAt+HAL
return (2/,y’,0")T

sin(0 + OAt)
cos(6 + @A)

ESSIEN
||

N G

Figure 5.4 Sampling from the velocity motion model, using the same parameters as in Figure 5.3. Each diagram shows 500
samples.

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

sttt for Al ond
’.' Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 22 /26

abilistic
ROBOTICS

Odometry Motion Model '

> Given an initial pose x; and a final pose x;.1, the motion can be modelled by an initial roté
Orot, towards the goal, a translational motion di.ans, and a final rotation o,

» Under the odometry motion model, the components of
the motion are all under the influence of noise:

2 2
6r0t1 5rot1 € 6rot1 + 2080
6I’0t2 = 6r0t2 + 60‘1 6|%>t1 +az 5t2rans
Otrans trans 60¢35t2ra,15+a45r20t1 +aadi,

Figure 5.8 The odometry motion model. for different noise parameter settings.

» The pose update under the odometry motion model is thus given as

x! T fitrans COS(Q + érotl)

yl =y |+ | Strans Sin(9 + 5rot1)
’ N N

0 9 6I’0t1 + 6rot2

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

sttt for Al ond
’.. Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 23 /26

Odometry Motion Model Sampling

» The algorithm below can be used for sampling from the odometry motion model

1: function SaMpLEODOMETRYMOTIONMODEL(Zt = (,¥,0), ut = (Tt—1,Tt))
2: Orot; < atan2(y’ — 5,7 —) — 0
30 bwans = /(@ —7)2+ (7 —7)?
YN
4. (Srotg — 0 —0— 6rot1

5: Oroty < Jrot; — sample (o183, + 263,ns)
6: Otrans — Otrans — sample (agé?rans + a46r20t1 + a45r20t2)
7: Oroty < Orot, — sample (aléfm + azéfrans)

8: ' —ax+ (?trans COS(0 + érotl)
9: yl —y+ étrans SiI}(@ + 5rot1)

10: 0«0 + 6rot1 + 6!’0“.2
)T

11: return (z/,y’, 0’

Figure 5.9 Sampling from the odometry motion model, using the same parameters as in Figure 5.8. Each diagram shows

o . Hochschule S somaschen
Bonn-Rhein-Sieg -It B st fo A o
University of Applied Sciences Information Technology wtonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 24 /26

Determining the Noise Parameters

» Both the velocity motion model and the odometry motion model represent noise by a set of
parameters a1.6 and «q.4, respectively

» The noise parameters are robot-specific — the noise induced by a given motion varies between
robots, as it depends on the concrete kinematic structure

» These parameters need to be determined experimentally, using a procedure as follows:
1. Collect a dataset of robot motions

2. Calculate the probability p(x:+i|ust1,) under the chosen motion model — algorithms for
calculating the probability are given in the reference book

3. Perform parameter estimation, for instance using maximum likelihood estimation (MLE)

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

sttt for Al ond
’.' Autonomous Systems Monte Carlo Localisation: Localising Using a Particle Filter 25 / 26

Summary

» A particle filter approximates an unknown state distribution by a discrete set of particles

» Each particle represents a weighted hypothesis about the state, where the weight is determined by the
measurement model

» Particle filters update the approximation of the state distribution by performing importance
sampling
» At each iteration, particles are sampled with replacement; the probability that a particle is sampled is
proportional to its weight

» Unlike a Kalman filter, a particle filter can, in principle, be used to recover from the kidnapped
robot problem

» For this, randomly distributed particles can be added during the particle resampling process

» Probabilistic motion models, such as the velocity motion model and the odometry motion model,
can be used for recursive state estimation using particle filters

o . Hochschule
Bonn-Rhein-Sieg institute for

University of Applied Sciences

Aland
s Systems

Monte Carlo Localisation: Localising Using a Particle Filter 26 / 26

