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Localisation Preliminaries
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What is Localisation?
» In order for a robot to move purposefully (e.g. find path plans

as discussed in the last lecture), it needs to know its
whereabouts in the environment
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» In order for a robot to move purposefully (e.g. find path plans
as discussed in the last lecture), it needs to know its
whereabouts in the environment

» The process that determines a robot's pose in an environment
is called localisation
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What is Localisation?
» In order for a robot to move purposefully (e.g. find path plans

as discussed in the last lecture), it needs to know its
whereabouts in the environment

» The process that determines a robot's pose in an environment
is called localisation

» The localisation process is performed with respect to a given
map — thus, localisation requires a map to be given
» The process of creating a map and localising is called
simultaneous localisation and mapping (SLAM)
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In order for a robot to move purposefully (e.g. find path plans
as discussed in the last lecture), it needs to know its
whereabouts in the environment

The process that determines a robot's pose in an environment
is called localisation

The localisation process is performed with respect to a given
map — thus, localisation requires a map to be given
» The process of creating a map and localising is called
simultaneous localisation and mapping (SLAM)

Since a robot moves around, the localisation estimate needs to
be continuously updated based on the known motion
commands and any relevant environment observations
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What is Localisation?
» In order for a robot to move purposefully (e.g. find path plans

as discussed in the last lecture), it needs to know its
whereabouts in the environment

» The process that determines a robot's pose in an environment
is called localisation

» The localisation process is performed with respect to a given
map — thus, localisation requires a map to be given
» The process of creating a map and localising is called
simultaneous localisation and mapping (SLAM)

» Since a robot moves around, the localisation estimate needs to
be continuously updated based on the known motion
commands and any relevant environment observations

Localisation is a process of estimating the pose of a mobile robot in
a given environment as the robot moves around and collects sensor
measurements
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Pose Uncertainty and Belief

» Due to noisy motions and sensor measurements, a robot is
typically never fully certain about its pose in the
environment

» The pose estimate is always associated with some uncertainty
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Pose Uncertainty and Belief

» Due to noisy motions and sensor measurements, a robot is
typically never fully certain about its pose in the
environment

» The pose estimate is always associated with some uncertainty

I » For this reason, pose estimates are represented by a belief
© bel (@), which models the probability distribution

bel (x:) = np (x¢|wot, 21:¢, To:t—1)

® where @ represents a state, u is a control signal, z is a
measurement, and 7 is a normalisation constant
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Pose Uncertainty and Belief

» Due to noisy motions and sensor measurements, a robot is
typically never fully certain about its pose in the
environment

» The pose estimate is always associated with some uncertainty

I » For this reason, pose estimates are represented by a belief
© bel (@), which models the probability distribution

bel (x:) = np (x¢|wot, 21:¢, To:t—1)

® where @ represents a state, u is a control signal, z is a
measurement, and 7 is a normalisation constant

» The belief is continuously updated as a robot moves around
and collects measurements of the environment
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Kidnapped Robot Problem

» In the context of localisation, it is important to consider whether a robot can recover from
catastrophic localisation failures
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Kidnapped Robot Problem

» In the context of localisation, it is important to consider whether a robot can recover from
catastrophic localisation failures

» The kidnapped robot problem refers to a complete localisation loss — as if a robot has been
kidnapped by someone and brought to a completely different location than where it started
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Kidnapped Robot Problem

» In the context of localisation, it is important to consider whether a robot can recover from
catastrophic localisation failures

» The kidnapped robot problem refers to a complete localisation loss — as if a robot has been
kidnapped by someone and brought to a completely different location than where it started

» ldeally, a localisation method should be robust to the kidnapped robot problem

» Robustness requires a possibility to discard the current localisation estimate as wrong so that a new
estimate can be made
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ROBOTICS

Recursive State Estimation Using a Bayes Filter

» The process of continuously updating the belief based on performed motions and recorded
measurements is called recursive state estimation; this is performed using a Bayes filter
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ROBOTICS

Recursive State Estimation Using a Bayes Filter

» The process of continuously updating the belief based on performed motions and recorded
measurements is called recursive state estimation; this is performed using a Bayes filter

» The Bayes filter continuously performs two steps:
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Recursive State Estimation Using a Bayes Filter

» The process of continuously updating the belief based on performed motions and recorded
measurements is called recursive state estimation; this is performed using a Bayes filter

[ *Probabilistic

ROBOTICS

» The Bayes filter continuously performs two steps:

Control update (prediction)

The belief is updated based on a performed
motion wu;:

bel (@) = /p(thut,wt_l)bel (z4-1) day_y
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Recursive State Estimation Using a Bayes Filter

» The process of continuously updating the belief based on performed motions and recorded
measurements is called recursive state estimation; this is performed using a Bayes filter

ROBOTICS

[ *Probabilistic

» The Bayes filter continuously performs two steps:

Control update (prediction) Measurement update (correction)
The belief is updated based on a performed The belief is corrected based on a sensor
motion w;: measurement z;:

bel (z;) = /p(thut,wt-l)bel (z¢—1) dai— bel (z;) = np (z¢|z¢) bel ()
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Recursive State Estimation Using a Bayes Filter

» The process of continuously updating the belief based on performed motions and recorded
measurements is called recursive state estimation; this is performed using a Bayes filter
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» The Bayes filter continuously performs two steps:

Control update (prediction) Measurement update (correction)
The belief is updated based on a performed The belief is corrected based on a sensor
motion w;: measurement z;:

bel (z;) = /p(thut,wt-l)bel (z¢—1) dai— bel (z;) = np (z¢|z¢) bel ()

» The control update increases the pose uncertainty, while the measurement update decreases it
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Recursive State Estimation Using a Bayes Filter

» The process of continuously updating the belief based on performed motions and recorded
measurements is called recursive state estimation; this is performed using a Bayes filter
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» The Bayes filter continuously performs two steps:

Control update (prediction) Measurement update (correction)
The belief is updated based on a performed The belief is corrected based on a sensor
motion w;: measurement z;:

bel (z;) = /p(thut,wt-l)bel (z¢—1) dai— bel (z;) = np (z¢|z¢) bel ()

» The control update increases the pose uncertainty, while the measurement update decreases it

» Both update equations are based on the Markov assumption, according to which:
» x; only depends on x;—1 and u.

» z; only depends on x¢
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Recursive State Estimation Using a Bayes Filter

» The process of continuously updating the belief based on performed motions and recorded
measurements is called recursive state estimation; this is performed using a Bayes filter
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» The Bayes filter continuously performs two steps:

Control update (prediction) Measurement update (correction)
The belief is updated based on a performed The belief is corrected based on a sensor
motion w;: measurement z;:

bel (z;) = /p(thut,wt-l)bel (z¢—1) dai— bel (z;) = np (z¢|z¢) bel ()

» The control update increases the pose uncertainty, while the measurement update decreases it

» Both update equations are based on the Markov assumption, according to which:
» x; only depends on x;—1 and u.

» z; only depends on x¢

» More background details behind the Bayes filter are covered in “Mathematics for Robotics and
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Recursive Bayes Filter Family

» The Bayes filter is not a single algorithm, but a family of algorithms, each of which is based on
different assumptions
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Recursive Bayes Filter Family

» The Bayes filter is not a single algorithm, but a family of algorithms, each of which is based on
different assumptions

» We will particularly distinguish between the following variants of the recursive Bayes filter as
applied to the robot localisation problem:

» Discrete Bayes filter: Applicable when the state is discretised (discussed in MRC)
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» The Bayes filter is not a single algorithm, but a family of algorithms, each of which is based on
different assumptions

» We will particularly distinguish between the following variants of the recursive Bayes filter as
applied to the robot localisation problem:

» Discrete Bayes filter: Applicable when the state is discretised (discussed in MRC)

» Kalman filter: Assumes that the state is governed by a Gaussian distribution (discussed today)
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Recursive Bayes Filter Family

» The Bayes filter is not a single algorithm, but a family of algorithms, each of which is based on
different assumptions

» We will particularly distinguish between the following variants of the recursive Bayes filter as
applied to the robot localisation problem:

» Discrete Bayes filter: Applicable when the state is discretised (discussed in MRC)
» Kalman filter: Assumes that the state is governed by a Gaussian distribution (discussed today)

» Particle filter: Does not make an assumption about the underlying state distribution; represents
multiple hypotheses about the state by a set of particles (discussed next time)
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Kalman Filter
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Kalman Filter Preliminaries

» The Kalman filter is a Bayes filter that can be used for continuous state and measurement
spaces
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Kalman Filter Preliminaries

» The Kalman filter is a Bayes filter that can be used for continuous state and measurement
spaces

> In a Kalman filter, the belief about the state is represented by a Gaussian distribution N (u, )
» The estimation thus performs updates of the mean p and the covariance matrix X
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Kalman Filter Preliminaries

» The Kalman filter is a Bayes filter that can be used for continuous state and measurement
spaces

> In a Kalman filter, the belief about the state is represented by a Gaussian distribution N (u, )
» The estimation thus performs updates of the mean p and the covariance matrix X

> Recall that a multivariate Gaussian distribution A/(u, X) for an n-dimensional & has the form

N, %) = 1 o H @) @)
(2m)ndet &
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Kalman Filter Preliminaries

» The Kalman filter is a Bayes filter that can be used for continuous state and measurement
spaces

> In a Kalman filter, the belief about the state is represented by a Gaussian distribution A/(u, )
» The estimation thus performs updates of the mean p and the covariance matrix X

> Recall that a multivariate Gaussian distribution N (s, X) for an n-dimensional « has the form

N, %) = L i)™ e
(2m)ndet &

» Considering a state x; and an estimate &;, the filter is optimal in the sense that it minimises the
mean squared error
A ~ \T ~
MSE (i, &) = (@1 — &) (1 — 1)
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ROBOTICS

Linear Motion and Measurement Models

» The Kalman filter assumes that the motion and measurement models are both linear, and
that the initial state distribution is governed by a Gaussian distribution; under these
assumptions, the posterior state estimate is also a Gaussian
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Linear Motion and Measurement Models

» The Kalman filter assumes that the motion and measurement models are both linear, and
that the initial state distribution is governed by a Gaussian distribution; under these
assumptions, the posterior state estimate is also a Gaussian

» This means that the motion model is governed by a linear system of the form
xy = A1+ Brug + €

where A; is a state transition matrix, B is a process matrix, and €; ~ N (0, R;) is process noise
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Linear Motion and Measurement Models

» The Kalman filter assumes that the motion and measurement models are both linear, and
that the initial state distribution is governed by a Gaussian distribution; under these
assumptions, the posterior state estimate is also a Gaussian

» This means that the motion model is governed by a linear system of the form
xy = A1+ Brug + €

where A; is a state transition matrix, B is a process matrix, and €; ~ N (0, R;) is process noise
» The measurement model is also given by a linear system, which is represented as
zy = Cyxy + 0y
where Cy is a measurement matrix and 8; ~ A (0, Q) is measurement noise
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Kalman Filter Intuition

i Probapitistic

ROBOTICS

» A Kalman filter is a Bayes filter, so, at its core, it
- . performs state and measurements updates

@ @
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Figure 3.2 Tllustration of Kalman filters: (a) initial belicf, (b) a measurement (in bold) with the associated uncertainty, (¢)
belier egrating the measurement into the belief using the Kalman filter algorithm, (d) belief after motion to the right
(which introduces uncertainty), (¢) a new measurement with associated uncertainty, and (1) the resulting belief.
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ROBOTICS

Kalman Filter Intuition

» A Kalman filter is a Bayes filter, so, at its core, it
performs state and measurements updates

. e » Often, x, is assumed to be known without
o ambiguity; thus, it is represented by Dirac delta
‘° function, in which case po = (zg) and X =0

(© ®

Figure 3.2 Illustration of filters: (a) initial belief, (b) a measurement (in bold) with the associated uncertainty, (¢)
belie afler integrating the measurement into the belief using the Kalman filter algorithm, (d) belief after motion 1o the right
(which introduces uncertainty), (¢) a new measurement with associated uncertainty, and (1) the resulting belief.
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Kalman Filter Intuition

» A Kalman filter is a Bayes filter, so, at its core, it
performs state and measurements updates

» - . » Often, x, is assumed to be known without
A ambiguity; thus, it is represented by Dirac delta
function, in which case pg = ¢ (zg) and ¥ =0

» At any other time ¢, the state estimate is given by a
Gaussian N (p4—1,24—1), such that the objective is
/7 to find an updated Gaussian N (p, 3)
M -2 » The estimate should incorporate a motion update
and 2 measurement update, which are governed by
the previously discussed linear motion model
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ROBOTICS

Kalman Filter Summary

1. The state is updated based on the controlled motion:

By = Aipe—1 + Bruy
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ROBOTICS

Kalman Filter Summary

1. The state is updated based on the controlled motion:

By = Agpre—1 + Bruy

2. The covariance is updated based on the controlled motion by considering the motion noise:

Et = AtZt_lAf + Rt
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ROBOTICS

Kalman Filter Summary

1. The state is updated based on the controlled motion:

Py = Arpy—1 + Biuy

2. The covariance is updated based on the controlled motion by considering the motion noise:
¥ =AY AT + R,

3. The Kalman gain is computed using the updated covariance and the measurement noise:

_ _ -1
K, = S cf (GiScf + Q)
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ROBOTICS

Kalman Filter Summary

1. The state is updated based on the controlled motion:

By = Atpe—1 + Bruy
2. The covariance is updated based on the controlled motion by considering the motion noise:
¥ =AY AT + R,
3. The Kalman gain is computed using the updated covariance and the measurement noise:
K =Sl (GS Q)
4. The state and the covariance are updated based on the measurement:
g = + K (Zt—ctﬁt)

5 = (I— K, Ct> %,
0@ e,
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ROBOTICS

Kalman Filter Derivation Sketch: Control Update

The derivation of the Kalman filter equations is a bit involved, but can be summarised through the
following steps:
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Kalman Filter Derivation Sketch: Control Update

babilistic
ROBOTICS

The derivation of the Kalman filter equations is a bit involved, but can be summarised through the
following steps:

1. Expanding bel (z;) by substituting for p (x;|us, z; 1) and bel (wt,l)ﬁoth of which are
Gaussian distributions; this results in a belief representation of the form bel (x;) = nfe_Ltd:ct_l
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Kalman Filter Derivation Sketch: Control Update

The derivation of the Kalman filter equations is a bit involved, but can be summarised through the
following steps:

1. Expanding bel (z;) by substituting for p (x;|us, z; 1) and bel (wt,l)ﬁoth of which are
Gaussian distributions; this results in a belief representation of the form bel (x;) = nfe_Ltd:ct_l

2. Rewriting L; in the form L; = L; (x¢—1, %) + L (z;) so that
bel (x;) = ne Lt@) [ L, (zy_1, ;) doy—1
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Kalman Filter Derivation Sketch: Control Update

The derivation of the Kalman filter equations is a bit involved, but can be summarised through the
following steps:

1. Expanding bel (z;) by substituting for p (x;|us, z; 1) and bel (wt,l)ﬁoth of which are
Gaussian distributions; this results in a belief representation of the form bel (x;) = nfe_Ltd:ct_l

2. Rewriting L; in the form L; = L; (x¢—1, %) + L (z;) so that
bel (x;) = ne Lt@) [ L, (zy_1, ;) doy—1

3. Selecting L; (x¢) to be a quadratic function with a constant [ L, (x;_1,x;)dx;_1; as a
result, bel (x;) = ne

—Ly ()
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Kalman Filter Derivation Sketch: Control Update

The derivation of the Kalman filter equations is a bit involved, but can be summarised through the
following steps:

1. Expanding bel (z;) by substituting for p (x;|us, z; 1) and bel (wt,l)ioth of which are
Gaussian distributions; this results in a belief representation of the form bel (x;) = nfe_Ltd:ct_l

2. Rewriting L; in the form L; = L; (x¢—1, %) + L (z;) so that
bel (x;) = ne Lt@) [ L, (zy_1, ;) doy—1

3. Selecting L, (x;) to be a quadratic function with a constant [ L; (x;_1, ;) dx,_1; as a
result, bel (z;) = ne—Lt(wt)

4. Determining L; (x;) from L, and L, (x;_1,x;); this results in a quadratic function, which means
that bel (x¢) is a Gaussian distribution
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Kalman Filter Derivation Sketch: Control Update

The derivation of the Kalman filter equations is a bit involved, but can be summarised through the
following steps:

1. Expanding bel (z;) by substituting for p (x;|us, z; 1) and bel (wt,l)ioth of which are
Gaussian distributions; this results in a belief representation of the form bel (x;) = nfe_Ltd:ct_l

2. Rewriting L; in the form L; = L; (x¢—1, %) + L (z;) so that
bel (x;) = ne Lt@) [ L, (zy_1, ;) doy—1

3. Selecting L, (x;) to be a quadratic function with a constant [ L; (x;_1, ;) dx,_1; as a
result, bel (z;) = ne—Lt(wt)

4. Determining L; (x;) from L, and L, (x;_1,x;); this results in a quadratic function, which means
that bel (x¢) is a Gaussian distribution
» The mean of the updated distribution is determined by the minimum of L, (x.) over x;
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Kalman Filter Derivation Sketch: Control Update

The derivation of the Kalman filter equations is a bit involved, but can be summarised through the
following steps:

1. Expanding bel (z;) by substituting for p (x;|us, z; 1) and bel (wt,l)ioth of which are
Gaussian distributions; this results in a belief representation of the form bel (x;) = nfe_Ltd:ct_l

2. Rewriting L; in the form L; = L; (x¢—1, %) + L (z;) so that
bel (x;) = ne Lt@) [ L, (zy_1, ;) doy—1

3. Selecting L, (x;) to be a quadratic function with a constant [ L; (x;_1, ;) dx,_1; as a
result, bel (z;) = ne—Lt(wt)

4. Determining L; (x;) from L, and L, (x;_1,x;); this results in a quadratic function, which means
that bel (x¢) is a Gaussian distribution
» The mean of the updated distribution is determined by the minimum of L, (x.) over x;

» The covariance is determined by the curvature of L, (x;), namely the inverse of the second
derivative of L; (z:) with respect to x;
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ROBOTICS

Kalman Filter Derivation Sketch: Measurement Update

The derivation of the measurement update also involves multiple steps:
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Kalman Filter Derivation Sketch: Measurement Update

The derivation of the measurement update also involves multiple steps:

1. Substituting p (2;|z;) and bel (z; ) into bel (z,); as both of them are Gaussian distributions;
the belief is of the form bel (x;) = ne~’t, where J; is a quadratic function
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Kalman Filter Derivation Sketch: Measurement Update _.:_.;;.,

The derivation of the measurement update also involves multiple steps:

1. Substituting p (2;|z;) and bel (z; ) into bel (z,); as both of them are Gaussian distributions;
the belief is of the form bel (x;) = ne~’t, where J; is a quadratic function

2. Determining p; by the minimum of the derivative of J;
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The derivation of the measurement update also involves multiple steps:

1. Substituting p (2;|z;) and bel (z; ) into bel (z,); as both of them are Gaussian distributions;
the belief is of the form bel (x;) = ne~’t, where J; is a quadratic function

2. Determining p; by the minimum of the derivative of J;

3. Manipulating K, which at this point is expressed as K; = EtC’tTQt_l, so that the dependence
on Y; is eliminated
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ROBOTICS

Kalman Filter Derivation Sketch: Measurement Update

The derivation of the measurement update also involves multiple steps:

1. Substituting p (2;|z;) and bel (z; ) into bel (z,); as both of them are Gaussian distributions;
the belief is of the form bel (x;) = ne~’t, where J; is a quadratic function

2. Determining p; by the minimum of the derivative of J;

3. Manipulating K, which at this point is expressed as K; = EtC’tTQt_l, so that the dependence
on Y; is eliminated

4. Calculating the covariance matrix ¥; as the inverse of the second derivative of J;
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Inversion Lemma (Sherman—Morrison-Woodbury Identity)

» The Kalman filter derivation makes use of a matrix identity called the inversion lemma

» The inversion lemma is expressed as

(A+PQR)™ ' =A'—A'P(Q"'+RA'P) T RA™!

» Both the state update and the measurement update use this identity for rewriting expressions
during the derivation
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Kalman Filter and Non-Linear Models

» The linearity assumption of the Kalman filter is rather limiting — the motion and measurement
models for a robot are often expressed by non-linear relations
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Kalman Filter and Non-Linear Models
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ROBOTICS

» The linearity assumption of the Kalman filter is rather limiting — the motion and measurement
models for a robot are often expressed by non-linear relations

» In this case, the motion model is expressed by a non-linear function

T =g (up, xi—1) + €

where €; ~ N (0, R;) is process noise as before
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Kalman Filter and Non-Linear Models

» The linearity assumption of the Kalman filter is rather limiting — the motion and measurement
models for a robot are often expressed by non-linear relations

» In this case, the motion model is expressed by a non-linear function
Ty =g (U, Tr1) + €
where €; ~ N (0, R;) is process noise as before
» Similarly, the measurement model is now expressed by a non-linear function
zt = h(x:) + 0:

where §; ~ N(0,Q;) is again measurement noise
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Kalman Filter and Non-Linear Models

» The linearity assumption of the Kalman filter is rather limiting — the motion and measurement
models for a robot are often expressed by non-linear relations

» In this case, the motion model is expressed by a non-linear function
Ty =g (U, Tr1) + €
where €; ~ N (0, R;) is process noise as before
» Similarly, the measurement model is now expressed by a non-linear function
zt = h(x:) + 0:

where §; ~ N(0,Q;) is again measurement noise

» The Kalman filter needs to be extended so that it can be used in the non-linear case; we will now
take a brief look at some extensions to make this possible
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Extended Kalman Filter (EKF)

» The idea behind the extended Kalman filter is simple: a
first-order Taylor approximation of the non-linear models
is performed to eliminate the non-linearity

fProbabitistic
L RoBOTICS

ply) Function g(x)
— Gaussian of ply) N - -~ Taylor approx.
[\ | — Mean of p(y) 35 x Meany
| -=- EKF Gaussian o gl
- - - Mean of EKF s
\ES ;
Y i v X
a z
L
ply) X
Px)
x Meanyp
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Extended Kalman Filter (EKF)
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ROBOTICS

» The idea behind the extended Kalman filter is simple: a |
first-order Taylor approximation of the non-linear models
is performed to eliminate the non-linearity

» The motion model is linearised around p;_1:

| B R ,
NE e o s 9wy, 1) = g(ue, pre—1) + g'(we, pre—1) (@1 — pre-1)
T g = g(ug, p—1) + G(Tr—1 — pe—1)
L
where G is the Jacobian of g
ply) x
x Meanp
g ’_/
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Extended Kalman Filter (EKF)

» The idea behind the extended Kalman filter is simple: a &
first-order Taylor approximation of the non-linear models
is performed to eliminate the non-linearity

fProbabitistic

ROBOTICS

» The motion model is linearised around p;_1:

ply) . '— Function g(x)
— Gaussian of ply) % - Taylor approx
N L g(ue, xi—1) = g(ue, pe—1) + g'(we, pre—1)(@e—1 — pe-1)
T : = g(us, pe—1) + G(Tr—1 — pe—1)

fg where G is the Jacobian of g

» The measurement model is linearised around 7i,:

< s h(w:) ~ h(f,) + h' () (e — 12,
= h(p,) + H(x — ;)

ply) x

b
g

where H is the Jacobian of h

» These linearised estimates then represent the means in the
O@ ‘o . aussian motion and measurement models
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ROBOTICS

Extended Kalman Filter Summary

1. The state is updated based on the motion according to the non-linear motion model:

By = g(ue, pe—1)

o . Hochschule
Bonn-Rhein-Sieg

University of Applied Sciences

nstite for ALand
’.' Autonomous Systems Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 19 /23



ROBOTICS

Extended Kalman Filter Summary

1. The state is updated based on the motion according to the non-linear motion model:
2 = g(us, pe—1)

2. The covariance is updated based on the motion by considering the linearised motion model and the
motion noise:
it = GtEt_le + Rt
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Extended Kalman Filter Summary

1. The state is updated based on the motion according to the non-linear motion model:
2 = g(us, pe—1)

2. The covariance is updated based on the motion by considering the linearised motion model and the
motion noise:
it = GtEt,le + Rt

3. The Kalman gain is computed by considering the linearised measurement model, the updated
covariance, and the measurement noise:

— _ -1
Ki = o 0] (H/ S0 H + Q1)
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ROBOTICS

Extended Kalman Filter Summary

1. The state is updated based on the motion according to the non-linear motion model:
ﬂt = g(utv I‘Ltfl)

2. The covariance is updated based on the motion by considering the linearised motion model and the
motion noise:
it = GtEt,le + Rt

3. The Kalman gain is computed by considering the linearised measurement model, the updated
covariance, and the measurement noise:
—1

Ki = o 0] (H/ S0 H + Q1)
4. The state and the covariance are updated based on the measurement
“ @+ & (-0 (7))

%, — (I— K, Ht) 3,
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Side-by-Side Comparison of the Linear and Extended Kalman Filters

Linear Kalman filter

By = A1 + Biuy

5 = A% AT+ R,

Ky

sl (escr Q)
e + K (zt—ct ﬁt)

(I - K C’t) 3,

Extended Kalman filter
= g(ue, pe—1)
5 =G 1 GT + R
K, = % b (H, 5, HY +Qt)_1

W - 7+ K (= (@)

5, = (1— K, Ht) 3,
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Unscented Kalman Filter (UKF)

i Probapitistic
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= » The unscented Kalman filter performs linearisation using an
— o
= Vansig et unscented transform
Wean ot UK
g
ply) x
x Meanu
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ROBOTICS

Unscented Kalman Filter (UKF)

— Function g(x)

= » The unscented Kalman filter performs linearisation using an
)
= Vansig O oo unscented transform

KF Gaussian

» The idea behind the unscented transform is to approximate the
non-linear distribution using sigma points selected from the
distribution; these are passed through the non-linear
functions to update the distribution’s mean and covariance

ply) x

P(X)
x_Meanp

p)
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Unscented Kalman Filter (UKF)

abilistic
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& *Proba

— Function g(x)

= » The unscented Kalman filter performs linearisation using an
)
= Vansig O oo unscented transform

KF Gaussian

» The idea behind the unscented transform is to approximate the
non-linear distribution using sigma points selected from the
distribution; these are passed through the non-linear

- . functions to update the distribution’s mean and covariance

P(X)
x_Meanp

p)

» The unscented Kalman filter selects sigma points from
bel (x;—1) and bel (x) to linearise the motion and
measurement models
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Unscented Transform

ROBOTICS

The transform selects 2n + 1 sigma points for an n-dimensional N (u,Y) using the rule
bo=H
pi:u—l—( (n—l—/\)E),lSz’Sn

pz:u—( (n+)\)2),n+1§i§2n

with A = a?(n + k) — n — «a and k determine the locations of the points
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Unscented Transform '

robabilistic
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The transform selects 2n + 1 sigma points for an n-dimensional N (u,Y) using the rule
bo=H
pi=p+ (Yt D), 1<i<n
pi:u—( (n+)\)2),n+1§i§2n

with A = a?(n + k) — n — «a and k determine the locations of the points

The mean and covariance are computed as
weighted averages over the sigma points:

2n
p =Y wig(p)
i=0

2n
> = ij (9(pi) — 1) (9(pi) — )"
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Unscented Transform
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The transform selects 2n + 1 sigma points for an n-dimensional N (u, ) using the rule
Po=p
pi=p+(Vin+NE),1<i<n

pi:u—< (n+)\)2),n+1§i§2n

with A = a?(n + k) — n — «a and k determine the locations of the points

The mean and covariance are computed as The weights are calculated as
weighted averages over the sigma points: )
2n wg = D
n
p =Y wig(p) \
i=0 T _ 1—o2
2n “o n—+ A ( ot 6)
=3 wl(g(pi) — 1) (9(pi) — )" R S SR PP
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Summary

» Localisation is the problem of determining a robot’s pose in an environment

» The recursive Bayes filter is a family of algorithms that can be used for state estimation in general
and localisation in particular

» The Kalman filter is one particular type of Bayes filter that represents the state by a Gaussian
distribution and assumes linear motion and measurement models

> Extension of the Kalman filter, such as the extended Kalman Filter (EKF) and the unscented
Kalman filter (UKF), can be used to deal with non-linear motion and measurement models
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