
Kalman Filter-Based Localisation
Localising with a Gaussian Uncertainty Model

Dr. Alex Mitrevski
Master of Autonomous Systems



Structure

▶ Localisation preliminaries

▶ Kalman filter

Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 2 / 23



Localisation Preliminaries
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What is Localisation?

? ?

?

?

? ?

▶ In order for a robot to move purposefully (e.g. find path plans
as discussed in the last lecture), it needs to know its
whereabouts in the environment

▶ The process that determines a robot’s pose in an environment
is called localisation

▶ The localisation process is performed with respect to a given
map — thus, localisation requires a map to be given

▶ The process of creating a map and localising is called
simultaneous localisation and mapping (SLAM)

▶ Since a robot moves around, the localisation estimate needs to
be continuously updated based on the known motion
commands and any relevant environment observations

Localisation is a process of estimating the pose of a mobile robot in
a given environment as the robot moves around and collects sensor

measurements
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Pose Uncertainty and Belief

▶ Due to noisy motions and sensor measurements, a robot is
typically never fully certain about its pose in the
environment

▶ The pose estimate is always associated with some uncertainty

▶ For this reason, pose estimates are represented by a belief
bel (xt), which models the probability distribution

bel (xt) = η p (xt|u0:t, z1:t,x0:t−1)

where x represents a state, u is a control signal, z is a
measurement, and η is a normalisation constant

▶ The belief is continuously updated as a robot moves around
and collects measurements of the environment
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Kidnapped Robot Problem

▶ In the context of localisation, it is important to consider whether a robot can recover from
catastrophic localisation failures

▶ The kidnapped robot problem refers to a complete localisation loss — as if a robot has been
kidnapped by someone and brought to a completely different location than where it started

▶ Ideally, a localisation method should be robust to the kidnapped robot problem

▶ Robustness requires a possibility to discard the current localisation estimate as wrong so that a new
estimate can be made
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Recursive State Estimation Using a Bayes Filter
▶ The process of continuously updating the belief based on performed motions and recorded

measurements is called recursive state estimation; this is performed using a Bayes filter

▶ The Bayes filter continuously performs two steps:

Control update (prediction)

The belief is updated based on a performed
motion ut:

bel (xt) =

∫
p (xt|ut,xt−1) bel (xt−1) dxt−1

Measurement update (correction)

The belief is corrected based on a sensor
measurement zt:

bel (xt) = η p (zt|xt) bel (xt)

▶ The control update increases the pose uncertainty, while the measurement update decreases it

▶ Both update equations are based on the Markov assumption, according to which:
▶ xt only depends on xt−1 and ut

▶ zt only depends on xt

▶ More background details behind the Bayes filter are covered in “Mathematics for Robotics and
Control”
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Recursive Bayes Filter Family

▶ The Bayes filter is not a single algorithm, but a family of algorithms, each of which is based on
different assumptions

▶ We will particularly distinguish between the following variants of the recursive Bayes filter as
applied to the robot localisation problem:

▶ Discrete Bayes filter: Applicable when the state is discretised (discussed in MRC)

▶ Kalman filter: Assumes that the state is governed by a Gaussian distribution (discussed today)

▶ Particle filter: Does not make an assumption about the underlying state distribution; represents
multiple hypotheses about the state by a set of particles (discussed next time)
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Kalman Filter
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Kalman Filter Preliminaries

▶ The Kalman filter is a Bayes filter that can be used for continuous state and measurement
spaces

▶ In a Kalman filter, the belief about the state is represented by a Gaussian distribution N (µ,Σ)

▶ The estimation thus performs updates of the mean µ and the covariance matrix Σ

▶ Recall that a multivariate Gaussian distribution N (µ,Σ) for an n-dimensional x has the form

N (µ,Σ) =
1√

(2π)n detΣ
e−

1
2 (x−µ)TΣ−1(x−µ)

▶ Considering a state xt and an estimate x̂t, the filter is optimal in the sense that it minimises the
mean squared error

MSE (xt, x̂) = (xt − x̂t)
T
(xt − x̂t)

Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 10 / 23



Kalman Filter Preliminaries

▶ The Kalman filter is a Bayes filter that can be used for continuous state and measurement
spaces

▶ In a Kalman filter, the belief about the state is represented by a Gaussian distribution N (µ,Σ)

▶ The estimation thus performs updates of the mean µ and the covariance matrix Σ

▶ Recall that a multivariate Gaussian distribution N (µ,Σ) for an n-dimensional x has the form

N (µ,Σ) =
1√

(2π)n detΣ
e−

1
2 (x−µ)TΣ−1(x−µ)

▶ Considering a state xt and an estimate x̂t, the filter is optimal in the sense that it minimises the
mean squared error

MSE (xt, x̂) = (xt − x̂t)
T
(xt − x̂t)

Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 10 / 23



Kalman Filter Preliminaries

▶ The Kalman filter is a Bayes filter that can be used for continuous state and measurement
spaces

▶ In a Kalman filter, the belief about the state is represented by a Gaussian distribution N (µ,Σ)

▶ The estimation thus performs updates of the mean µ and the covariance matrix Σ

▶ Recall that a multivariate Gaussian distribution N (µ,Σ) for an n-dimensional x has the form

N (µ,Σ) =
1√

(2π)n detΣ
e−

1
2 (x−µ)TΣ−1(x−µ)

▶ Considering a state xt and an estimate x̂t, the filter is optimal in the sense that it minimises the
mean squared error

MSE (xt, x̂) = (xt − x̂t)
T
(xt − x̂t)

Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 10 / 23



Kalman Filter Preliminaries

▶ The Kalman filter is a Bayes filter that can be used for continuous state and measurement
spaces

▶ In a Kalman filter, the belief about the state is represented by a Gaussian distribution N (µ,Σ)

▶ The estimation thus performs updates of the mean µ and the covariance matrix Σ

▶ Recall that a multivariate Gaussian distribution N (µ,Σ) for an n-dimensional x has the form

N (µ,Σ) =
1√

(2π)n detΣ
e−

1
2 (x−µ)TΣ−1(x−µ)

▶ Considering a state xt and an estimate x̂t, the filter is optimal in the sense that it minimises the
mean squared error

MSE (xt, x̂) = (xt − x̂t)
T
(xt − x̂t)

Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 10 / 23



Linear Motion and Measurement Models

▶ The Kalman filter assumes that the motion and measurement models are both linear, and
that the initial state distribution is governed by a Gaussian distribution; under these
assumptions, the posterior state estimate is also a Gaussian

▶ This means that the motion model is governed by a linear system of the form

xt = Atxt−1 +Btut + ϵt

where At is a state transition matrix, Bt is a process matrix, and ϵt ∼ N (0, Rt) is process noise

▶ The measurement model is also given by a linear system, which is represented as

zt = Ctxt + δt

where Ct is a measurement matrix and δt ∼ N (0, Qt) is measurement noise
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Kalman Filter Intuition

▶ A Kalman filter is a Bayes filter, so, at its core, it
performs state and measurements updates

▶ Often, x0 is assumed to be known without
ambiguity; thus, it is represented by Dirac delta
function, in which case µ0 = δ (x0) and Σ = 0

▶ At any other time t, the state estimate is given by a
Gaussian N (µt−1,Σt−1), such that the objective is
to find an updated Gaussian N (µt,Σt)

▶ The estimate should incorporate a motion update
and a measurement update, which are governed by
the previously discussed linear motion model
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Kalman Filter Summary

1. The state is updated based on the controlled motion:

µt = Atµt−1 +Btut

2. The covariance is updated based on the controlled motion by considering the motion noise:

Σt = AtΣt−1A
T
t +Rt

3. The Kalman gain is computed using the updated covariance and the measurement noise:

Kt = Σt C
T
t

(
Ct Σt C

T
t +Qt

)−1

4. The state and the covariance are updated based on the measurement:

µt = µt + Kt

(
zt − Ct µt

)
Σt =

(
I − Kt Ct

)
Σt

Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 13 / 23



Kalman Filter Summary

1. The state is updated based on the controlled motion:

µt = Atµt−1 +Btut

2. The covariance is updated based on the controlled motion by considering the motion noise:

Σt = AtΣt−1A
T
t +Rt

3. The Kalman gain is computed using the updated covariance and the measurement noise:

Kt = Σt C
T
t

(
Ct Σt C

T
t +Qt

)−1

4. The state and the covariance are updated based on the measurement:

µt = µt + Kt

(
zt − Ct µt

)
Σt =

(
I − Kt Ct

)
Σt

Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 13 / 23



Kalman Filter Summary

1. The state is updated based on the controlled motion:

µt = Atµt−1 +Btut

2. The covariance is updated based on the controlled motion by considering the motion noise:

Σt = AtΣt−1A
T
t +Rt

3. The Kalman gain is computed using the updated covariance and the measurement noise:

Kt = Σt C
T
t

(
Ct Σt C

T
t +Qt

)−1

4. The state and the covariance are updated based on the measurement:

µt = µt + Kt

(
zt − Ct µt

)
Σt =

(
I − Kt Ct

)
Σt

Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 13 / 23



Kalman Filter Summary

1. The state is updated based on the controlled motion:

µt = Atµt−1 +Btut

2. The covariance is updated based on the controlled motion by considering the motion noise:

Σt = AtΣt−1A
T
t +Rt

3. The Kalman gain is computed using the updated covariance and the measurement noise:

Kt = Σt C
T
t

(
Ct Σt C

T
t +Qt

)−1

4. The state and the covariance are updated based on the measurement:

µt = µt + Kt

(
zt − Ct µt

)
Σt =

(
I − Kt Ct

)
Σt

Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 13 / 23



Kalman Filter Derivation Sketch: Control Update

The derivation of the Kalman filter equations is a bit involved, but can be summarised through the
following steps:

1. Expanding bel (xt) by substituting for p (xt|ut,xt−1) and bel (xt−1), both of which are
Gaussian distributions; this results in a belief representation of the form bel (xt) = η

∫
e−Ltdxt−1

2. Rewriting Lt in the form Lt = Lt (xt−1,xt) + Lt (xt) so that
bel (xt) = η e−Lt(xt)

∫
Lt (xt−1,xt) dxt−1

3. Selecting Lt (xt) to be a quadratic function with a constant
∫
Lt (xt−1,xt) dxt−1; as a

result, bel (xt) = η e−Lt(xt)

4. Determining Lt (xt) from Lt and Lt (xt−1,xt); this results in a quadratic function, which means
that bel (xt) is a Gaussian distribution

▶ The mean of the updated distribution is determined by the minimum of Lt (xt) over xt

▶ The covariance is determined by the curvature of Lt (xt), namely the inverse of the second
derivative of Lt (xt) with respect to xt

Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 14 / 23



Kalman Filter Derivation Sketch: Control Update

The derivation of the Kalman filter equations is a bit involved, but can be summarised through the
following steps:

1. Expanding bel (xt) by substituting for p (xt|ut,xt−1) and bel (xt−1), both of which are
Gaussian distributions; this results in a belief representation of the form bel (xt) = η

∫
e−Ltdxt−1

2. Rewriting Lt in the form Lt = Lt (xt−1,xt) + Lt (xt) so that
bel (xt) = η e−Lt(xt)

∫
Lt (xt−1,xt) dxt−1

3. Selecting Lt (xt) to be a quadratic function with a constant
∫
Lt (xt−1,xt) dxt−1; as a

result, bel (xt) = η e−Lt(xt)

4. Determining Lt (xt) from Lt and Lt (xt−1,xt); this results in a quadratic function, which means
that bel (xt) is a Gaussian distribution
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Kalman Filter Derivation Sketch: Measurement Update

The derivation of the measurement update also involves multiple steps:

1. Substituting p (zt|xt) and bel (xt−1) into bel (xt); as both of them are Gaussian distributions;
the belief is of the form bel (xt) = ηe−Jt , where Jt is a quadratic function

2. Determining µt by the minimum of the derivative of Jt

3. Manipulating Kt, which at this point is expressed as Kt = ΣtC
T
t Q

−1
t , so that the dependence

on Σt is eliminated

4. Calculating the covariance matrix Σt as the inverse of the second derivative of Jt
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Inversion Lemma (Sherman–Morrison–Woodbury Identity)

▶ The Kalman filter derivation makes use of a matrix identity called the inversion lemma

▶ The inversion lemma is expressed as

(A+ PQR)−1 = A−1 −A−1P
(
Q−1 +RA−1P

)−1
RA−1

▶ Both the state update and the measurement update use this identity for rewriting expressions
during the derivation
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Kalman Filter and Non-Linear Models

▶ The linearity assumption of the Kalman filter is rather limiting — the motion and measurement
models for a robot are often expressed by non-linear relations

▶ In this case, the motion model is expressed by a non-linear function

xt = g (ut,xt−1) + ϵt

where ϵt ∼ N (0, Rt) is process noise as before

▶ Similarly, the measurement model is now expressed by a non-linear function

zt = h (xt) + δt

where δt ∼ N (0, Qt) is again measurement noise

▶ The Kalman filter needs to be extended so that it can be used in the non-linear case; we will now
take a brief look at some extensions to make this possible
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Extended Kalman Filter (EKF)
▶ The idea behind the extended Kalman filter is simple: a

first-order Taylor approximation of the non-linear models
is performed to eliminate the non-linearity

▶ The motion model is linearised around µt−1:

g(ut,xt−1) ≈ g(ut,µt−1) + g′(ut,µt−1)(xt−1 − µt−1)

= g(ut,µt−1) +G(xt−1 − µt−1)

where G is the Jacobian of g

▶ The measurement model is linearised around µt:

h(xt) ≈ h(µt) + h′(µt)(xt − µt)

= h(µt) +H(xt − µt)

where H is the Jacobian of h

▶ These linearised estimates then represent the means in the
Gaussian motion and measurement models
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Extended Kalman Filter Summary

1. The state is updated based on the motion according to the non-linear motion model:

µt = g(ut,µt−1)

2. The covariance is updated based on the motion by considering the linearised motion model and the
motion noise:

Σt = GtΣt−1G
T
t +Rt

3. The Kalman gain is computed by considering the linearised measurement model, the updated
covariance, and the measurement noise:

Kt = Σt H
T
t

(
Ht Σt H

T
t +Qt

)−1

4. The state and the covariance are updated based on the measurement

µt = µt + Kt

(
zt − h

(
µt

))
Σt =

(
I − Kt Ht

)
Σt
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Side-by-Side Comparison of the Linear and Extended Kalman Filters

Linear Kalman filter

µt = Atµt−1 +Btut

Σt = AtΣt−1A
T
t +Rt

Kt = Σt C
T
t

(
Ct Σt C

T
t +Qt

)−1

µt = µt + Kt

(
zt − Ct µt

)
Σt =

(
I − Kt Ct

)
Σt

Extended Kalman filter

µt = g(ut,µt−1)

Σt = GtΣt−1G
T
t +Rt

Kt = Σt H
T
t

(
Ht Σt H

T
t +Qt

)−1

µt = µt + Kt

(
zt − h

(
µt

))
Σt =

(
I − Kt Ht

)
Σt
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Unscented Kalman Filter (UKF)

▶ The unscented Kalman filter performs linearisation using an
unscented transform

▶ The idea behind the unscented transform is to approximate the
non-linear distribution using sigma points selected from the
distribution; these are passed through the non-linear
functions to update the distribution’s mean and covariance

▶ The unscented Kalman filter selects sigma points from
bel (xt−1) and bel (xt) to linearise the motion and
measurement models
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Unscented Transform
The transform selects 2n+ 1 sigma points for an n-dimensional N (µ,Σ) using the rule

p0 = µ

pi = µ+
(√

(n+ λ)Σ
)
, 1 ≤ i ≤ n

pi = µ−
(√

(n+ λ)Σ
)
, n+ 1 ≤ i ≤ 2n

with λ = α2(n+ κ)− n — α and κ determine the locations of the points

The mean and covariance are computed as
weighted averages over the sigma points:

µ′ =
2n∑
i=0

wµ
i g(pi)

Σ′ =

2n∑
i=1

wΣ
i (g(pi)− µ′) (g(pi)− µ′)

T

The weights are calculated as

wµ
0 =

λ

n+ λ

wΣ
0 =

λ

n+ λ

(
1− α2 + β

)
wµ

i = wΣ
i =

1

2(n+ λ)
, 1 ≤ i ≤ 2n

Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 22 / 23



Unscented Transform
The transform selects 2n+ 1 sigma points for an n-dimensional N (µ,Σ) using the rule

p0 = µ

pi = µ+
(√

(n+ λ)Σ
)
, 1 ≤ i ≤ n

pi = µ−
(√

(n+ λ)Σ
)
, n+ 1 ≤ i ≤ 2n

with λ = α2(n+ κ)− n — α and κ determine the locations of the points

The mean and covariance are computed as
weighted averages over the sigma points:

µ′ =

2n∑
i=0

wµ
i g(pi)

Σ′ =

2n∑
i=1

wΣ
i (g(pi)− µ′) (g(pi)− µ′)

T

The weights are calculated as

wµ
0 =

λ

n+ λ

wΣ
0 =

λ

n+ λ

(
1− α2 + β

)
wµ

i = wΣ
i =

1

2(n+ λ)
, 1 ≤ i ≤ 2n

Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 22 / 23



Unscented Transform
The transform selects 2n+ 1 sigma points for an n-dimensional N (µ,Σ) using the rule

p0 = µ

pi = µ+
(√

(n+ λ)Σ
)
, 1 ≤ i ≤ n

pi = µ−
(√

(n+ λ)Σ
)
, n+ 1 ≤ i ≤ 2n

with λ = α2(n+ κ)− n — α and κ determine the locations of the points

The mean and covariance are computed as
weighted averages over the sigma points:

µ′ =

2n∑
i=0

wµ
i g(pi)

Σ′ =

2n∑
i=1

wΣ
i (g(pi)− µ′) (g(pi)− µ′)

T

The weights are calculated as

wµ
0 =

λ

n+ λ

wΣ
0 =

λ

n+ λ

(
1− α2 + β

)
wµ

i = wΣ
i =

1

2(n+ λ)
, 1 ≤ i ≤ 2n

Kalman Filter-Based Localisation: Localising with a Gaussian Uncertainty Model 22 / 23



Summary

▶ Localisation is the problem of determining a robot’s pose in an environment

▶ The recursive Bayes filter is a family of algorithms that can be used for state estimation in general
and localisation in particular

▶ The Kalman filter is one particular type of Bayes filter that represents the state by a Gaussian
distribution and assumes linear motion and measurement models

▶ Extension of the Kalman filter, such as the extended Kalman Filter (EKF) and the unscented
Kalman filter (UKF), can be used to deal with non-linear motion and measurement models
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