

Hochschule Bonn-Rhein-SiegUniversity of Applied Sciences

Improving the Reliability of Service Robots in the Presence of External Faults by Learning Action Execution Models

Alex Mitrevski, Anastassia Kuestenmacher, Santosh Thoduka, and Paul G. Plöger

May 31, 2017

Motivation: Execution Failures in Service Robotics

Motivation: Execution Failures in Service Robotics

A common cause of execution failures is the insufficient knowledge about the preconditions of actions

Modelling execution failures is difficult:

- Too many things can go wrong
- Failures are usually scenario-specific

Use Cases: Block Tower and Table

Scenario A: Releasing a cube on top of a block

Scenario B: A three-block Scenario C: A tower with tower

different blocks

Scenario A: Releasing an object between bottles

Scenario B: Different objects on the table

Scenario C: Cluttered table

Use Cases: Container and Fridge

book in a book container.

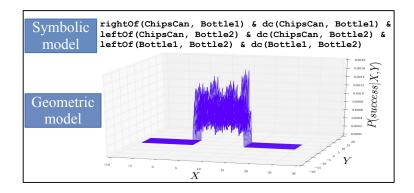
Scenario A: Releasing a Scenario B: Less space in the container

Scenario C: A container that is almost filled

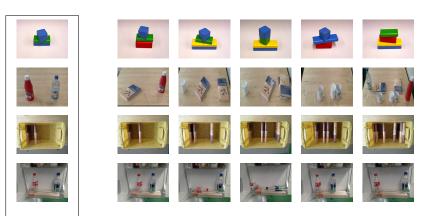
bottle on a fridge door

Scenario A: Releasing a Scenario B: Less space on the door

Scenario C: More space on the door


Focus of This Work

- Object release actions
- Failures due to lack of knowledge about object properties


We particularly address the following questions:

- How to represent action execution knowledge
- How to generalise execution knowledge
- How to update the knowledge if necessary

Action Execution Model Representation

Model Generalisation

Learning scenarios

Objective:
Generalisation over a large set of related scenarios

Experiments

What Are Our Models Good For?

Our models

- provide a unified representation of action execution constraints
- are robot-independent
- reduce the search space while learning how to execute actions
- increase the likelihood of execution success/decrease the likelihood of execution failures