
Reusable Specification of State Machines for Rapid Robot Func-
tionality Prototyping
Alex Mitrevski and Paul G. Plöger
Autonomous Systems Group, Hochschule Bonn-Rhein-Sieg, Germany

Reusable Specification of State Machines for Rapid Robot Func-
tionality Prototyping
Alex Mitrevski and Paul G. Plöger
Autonomous Systems Group, Hochschule Bonn-Rhein-Sieg, Germany

Introduction

Rapid prototyping of robot functionalities often involves the use of state machines, which model the execution by a set of states and transitions between them. This is particularly the
case when designing robot experiments, whose reproducibility is of utmost importance. Due to the simplicity with which state machines can be created, it is often the case that the
specification of a state machine is interleaved together with the implementation; this however affects the reusability and transparency of the state machine. We address this problem
with the help of a Python-oriented domain-specific language for specifying state machines and a small Python library that allows state machines to be dynamically created.

State Machine Library Diagram State Machine Definition Language

We use a TOML-based language for specifying state machines.
sm_id = <string >

states = <list[string]>

outcomes = <list[string]>

[state_descriptions]

[state_descriptions.STATE_NAME]

state_module_name = <string >

state_class_name = <string >

initial_state = <bool >

[state_descriptions.STATE_NAME.transitions]

transition_1_name = <string >

...

transition_n_name = <string >

[state_descriptions.STATE_NAME.arguments]

argument_1 = argument_1_value

...

argument_n = argument_n_value

...

[arguments]

argument_1 = argument_1_value

...

argument_n = argument_n_value

Example 1: Pick and Place Experiment for a Domestic Robot

The first example we consider is one in which a domestic robot
finds objects on a table, picks one of them, and then places it
back on the table at a potentially different position.

sm_id = "simple_pick_and_place"

states = [" GO_TO_TABLE", "SCAN_TABLE", "PICK", "PLACE "]

outcomes = ["DONE", "FAILED "]

[state_descriptions]

[state_descriptions.GO_TO_TABLE]

state_module_name = "mdr_navigation_behaviours.move_base"

state_class_name = "MoveBase"

initial_state = true

[state_descriptions.GO_TO_TABLE.transitions]

succeeded = "SCAN_TABLE"

failed = "GO_TO_TABLE"

failed_after_retrying = "FAILED"

[state_descriptions.GO_TO_TABLE.arguments]

destination_locations = ["TABLE"]

number_of_retries = 3

[state_descriptions.SCAN_TABLE]

state_module_name = "mdr_perception_behaviours.

perceive_planes"

state_class_name = "PerceivePlanes"

[state_descriptions.SCAN_TABLE.transitions]

succeeded = "PICK"

failed = "SCAN_TABLE"

failed_after_retrying = "FAILED"

[state_descriptions.SCAN_TABLE.arguments]

plane_prefix = "table"

number_of_retries = 3

[state_descriptions.PICK]

state_module_name = "mdr_manipulation_behaviours.

pick_closest_from_surface"

state_class_name = "PickClosestFromSurface"

[state_descriptions.PICK.transitions]

succeeded = "PLACE"

failed = "PICK"

failed_after_retrying = "FAILED"

find_objects_before_picking = "SCAN_TABLE"

[state_descriptions.PICK.arguments]

picking_surface_prefix = "table"

number_of_retries = 3

[state_descriptions.PLACE]

state_module_name = "mdr_manipulation_behaviours.place"

state_class_name = "Place"

[state_descriptions.PLACE.transitions]

succeeded = "DONE"

failed = "PLACE"

failed_after_retrying = "FAILED"

[state_descriptions.PLACE.arguments]

placing_surface_prefix = "table"

number_of_retries = 3

This specification allows easy state machine transfer
between robots - a consequence of the fact that
state machines are loaded dynamically.

Example 2: Docking to a Cart and Entering an Elevator for a Logistics Robot

A second example we consider involves an experiment in which
a logistics robot needs to dock to a cart and then enter an
elevator immediately after docking. This experiment thus in-
volves two states: docking to the cart and then entering an
elevator (where both states are state machines themselves).

The state machine specification of this experiment is given below.
sm_id = "dock_and_enter_elevator"

states = ["DOCK", "ENTER_ELEVATOR "]

outcomes = ["DONE", "FAILED "]

[state_descriptions]

[state_descriptions.DOCK]

state_module_name = "ropod_experiment_executor.commands.dock"

state_class_name = "Dock"

initial_state = true

[state_descriptions.DOCK.transitions]

done = "ENTER_ELEVATOR"

failed = "FAILED"

[state_descriptions.DOCK.arguments]

area_id = "Area1"

area_name = "CartArea1"

dock_action_topic = "/ ropod_task_executor/DOCK"

dock_progress_topic = "/ task_progress/dock"

timeout_s = 120.0

[state_descriptions.ENTER_ELEVATOR]

state_module_name = "ropod_experiment_executor.commands.enter_elevator"

state_class_name = "EnterElevator"

[state_descriptions.ENTER_ELEVATOR.transitions]

done = "DONE"

failed = "FAILED"

[state_descriptions.ENTER_ELEVATOR.arguments]

area_floor = 0

elevator_id = 4

elevator_door_id = 88

wait_for_elevator_action_topic = "/ ropod_task_executor/WAIT_FOR_ELEVATOR"

enter_elevator_action_topic = "/ ropod_task_executor/ENTER_ELEVATOR"

elevator_progress_topic = "/ task_progress/elevator"

timeout_s = 120.0

In our application, we invoke experiments
specified in this manner through a remote
monitoring interface, such that the status
of an experiment is continuously moni-
tored.

Future Work

I Support for multi-level hierarchical state machines

I Allow the specification of concurrent states

I Using the specification language for generating transparent automated tests

Open Source Repositories

[1] MAS Execution Manager. https://github.com/b-it-bots/mas execution manager.

[2] ROPOD Experiment Executor. https://github.com/ropod-project/ropod experiment executor.

[3] ROPOD Remote Monitoring. https://github.com/ropod-project/remote-monitoring.

Acknowledgement

We gratefully acknowledge the support by the b-it International Center for Information
Technology. We thank Argentina Ortega and Minh Nguyen for various suggestions
about the library, the b-it-bots@Home RoboCup team and the ROPOD team for its
early adoption, and Dharmin Bakaraniya for actively contributing to the development.

Contact

Alex Mitrevski
Hochschule Bonn-Rhein-Sieg
Email: aleksandar.mitrevski@h-brs.de

Grantham-Allee 20
53757 Sankt Augustin
Germany


